BiocStyle::markdown()
Authors: Johannes Rainer
Modified: r file.info("create-compounddb.Rmd")$mtime
Compiled: r date()
Chemical compound annotation and information can be retrieved from a variety of
sources including HMDB,
LipidMaps or
ChEBI. The r Biocpkg("CompoundDb")
package
provides functionality to extract data relevant for (chromatographic) peak
annotations in metabolomics/lipidomics experiments from these sources and to
store it into a common format (i.e. an CompDb
object/database). This vignette
describes how such CompDb
objects can be created exemplified with
package-internal test files that represent data subsets from some annotation
resources.
The R object to represent the compound annotation is the CompDb
object. Each
object (respectively its database) is supposed to contain and provide
annotations from a single source (e.g. HMDB or LipidMaps) but it is also
possible to create cross-source databases too.
CompDb
databasesCompDb
databases can be created from existing data resources such as the Human
Metabolome Database (HMDB) by importing all of their data or can alternatively
be build by sequentially adding data and information to the database. This
section explains first how data can be loaded from existing resources to create
a CompDb
database and in the last subsection how an empty CompDb
can be
sequentially and manually filled with annotation data \@ref(sec:fill).
The CompoundDb package provides the compound_tbl_sdf()
and the
compound_tbl_lipidblast()
functions to extract relevant compound annotation
from files in SDF (structure-data file) format or in the json files from
LipidBlast (http://mona.fiehnlab.ucdavis.edu/downloads). CompoundDb allows to
process SDF files from:
Note however that it is also possible to define such a table manually and use
that to create the database. As simple example for this is provided in the
section CompDb
from custom input \@ref(sec:custom) below or the help page of
createCompDb()
for more details on that.
CompDb
from HMDB dataBelow we use the compound_tbl_sdf()
to extract compound annotations from a SDF
file representing a very small subset of the HMDB database. To generate a
database for the full HMDB we would have to download the structures.sdf file
containing all metabolites and load that file instead.
library(CompoundDb) ## Locate the file hmdb_file <- system.file("sdf/HMDB_sub.sdf.gz", package = "CompoundDb") ## Extract the data cmps <- compound_tbl_sdf(hmdb_file)
The function returns by default a (data.frame
-equivalent) tibble
(from the
tidyverse's tibble package).
cmps
The tibble
contains columns
compound_id
: the resource-specific ID of the compound. Can be an integer
or a character
.name
: the name of the compound, mostly a generic or common name.inchi
: the compound's inchi.inchikey
: the INCHI key.formula
: the chemical formula of the compound.exactmass
: the compounds (monoisotopic) mass.synonyms
: a list
of aliases/synonyms for the compound.smiles
: the SMILES of the compound.To create a simple compound database, we could pass this tibble
along with
additional required metadata information to the createCompDb()
function. In
the present example we want to add however also MS/MS spectrum data to the
database. We thus load below the MS/MS spectra for some of the compounds from
the respective xml files downloaded from HMDB. To this end we pass the path to
the folder in which the files are located to the msms_spectra_hmdb()
function. The function identifies the xml files containing MS/MS spectra based
on their their file name and loads the respective spectrum data. The folder can
therefore also contain other files, but the xml files from HMDB should not be
renamed or the function will not recognice them. Note also that at present only
MS/MS spectrum xml files from HMDB are supported (one xml file per spectrum);
these could be downloaded from HMDB with the hmdb_all_spectra.zip file.
## Locate the folder with the xml files xml_path <- system.file("xml", package = "CompoundDb") spctra <- msms_spectra_hmdb(xml_path)
Also here, spectra information can be manually provided by adhering to the
expected structure of the data.frame
(see ?createCompDb
for details).
At last we have to create the metadata for the resource. The metadata
information for a CompDb
resource is crucial as it defines the origin of the
annotations and its version. This information should thus be carefully defined
by the user. Below we use the make_metadata()
helper function to create a
data.frame
in the expected format. The organism should be provided in the
format e.g. "Hsapiens"
for human or "Mmusculus"
for mouse, i.e. capital
first letter followed by lower case characters without whitespaces.
metad <- make_metadata(source = "HMDB", url = "http://www.hmdb.ca", source_version = "4.0", source_date = "2017-09", organism = "Hsapiens")
With all the required data ready we create the SQLite database for the HMDB
subset. With path
we specify the path to the directory in which we want to
save the database. This defaults to the current working directory, but for this
example we save the database into a temporary folder.
db_file <- createCompDb(cmps, metadata = metad, msms_spectra = spctra, path = tempdir())
The variable db_file
is now the file name of the SQLite database. We can pass
this file name to the CompDb()
function to get the CompDb
objects acting as
the interface to the database.
cmpdb <- CompDb(db_file) cmpdb
To extract all compounds from the database we can use the compounds()
function. The parameter columns
allows to choose the database columns to
return. Any columns for any of the database tables are supported. To get an
overview of available database tables and their columns, the tables()
function
can be used:
tables(cmpdb)
Below we extract only selected columns from the compounds table.
compounds(cmpdb, columns = c("name", "formula", "exactmass"))
Analogously we can use the Spectra()
function to extract spectrum data from
the database. The function returns by default a Spectra
object from the
r Biocpkg("Spectra")
package with all spectra metadata available as spectra
variables.
library(Spectra) sps <- Spectra(cmpdb) sps
The available spectra variables for the Spectra
object can be retrieved with
spectraVariables()
:
spectraVariables(sps)
Individual spectra variables can be accessed with the $
operator:
sps$collisionEnergy
And the actual m/z and intensity values with mz()
and intensity()
:
mz(sps) ## m/z of the 2nd spectrum mz(sps)[[2]]
Note that it is also possible to retrieve specific spectra, e.g. for a provided
compound, or add compound annotations to the Spectra
object. Below we use the
filter expression ~ compound_id == "HMDB0000001"
to get only MS/MS spectra for
the specified compound. In addition we ask for the "name"
and
"inchikey"
of the compound.
sps <- Spectra(cmpdb, filter = ~ compound_id == "HMDB0000001", columns = c(tables(cmpdb)$msms_spectrum, "name", "inchikey")) sps
The available spectra variables:
spectraVariables(sps)
The compound's name and INCHI key have thus also been added as spectra variables:
sps$inchikey
To share or archive the such created CompDb
database, we can also create a
dedicated R package containing the annotation. To enable reproducible research,
each CompDb
package should contain the version of the originating data source
in its file name (which is by default extracted from the metadata of the
resource). Below we create a CompDb
package from the generated database
file. Required additional information we have to provide to the function are the
package creator/maintainer and its version.
createCompDbPackage( db_file, version = "0.0.1", author = "J Rainer", path = tempdir(), maintainer = "Johannes Rainer <johannes.rainer@eurac.edu>")
The function creates a folder (in our case in a temporary directory) that can be
build and installed with R CMD build
and R CMD INSTALL
.
Special care should also be put on the license of the package that can be passed
with the license
parameter. The license of the package and how and if the
package can be distributed will depend also on the license of the originating
resource.
CompDb
from custom data {#sec:custom}A CompDb
database can also be created from custom, manually defined
annotations. To illustrate this we create below first a data.frame
with some
arbitrary compound annotations. According to the ?createCompDb
help page, the
data frame needs to have columns "compound_id"
, "name"
, "inchi"
,
"inchikey"
, "formula"
, "exactmass"
, "synonyms"
. All columns except
"compound_id"
can also contain missing values. It is also possible to define
additional columns. Below we thus create a data.frame
with some compound
annotations as well as additional columns. Note that all these annotations in
this example are for illustration purposes only and are by no means
real. Also, we don't provide any information for columns "inchi"
,
"inchikey"
and "formula"
setting all values for these to NA
.
cmps <- data.frame( compound_id = c("CP_0001", "CP_0002", "CP_0003", "CP_0004"), name = c("A", "B", "C", "D"), inchi = NA_character_, inchikey = NA_character_, formula = NA_character_, exactmass = c(123.4, 234.5, 345.6, 456.7), compound_group = c("G01", "G02", "G01", "G03") )
Next we add also synonyms for each compound. This columns supports multiple values for each row.
cmps$synonyms <- list( c("a", "AA", "aaa"), c(), c("C", "c"), ("d") )
We also need to define the metadata for our database, which we do with the
make_metadata()
function. With this information we can already create a first
rudimentary CompDb
database that contains only compound annotations. We thus
create below our custom CompDb
database in a temporary directory. We also
manually specify the name of our database with the dbFile
parameter - if not
provided, the name of the database will be constructed based on information from
the metadata
parameter. In a real-case scenario, path
and dbFile
should be
changed to something more meaningful.
metad <- make_metadata(source = "manually defined", url = "", source_version = "1.0.0", source_date = "2022-03-01", organism = NA_character_) db_file <- createCompDb(cmps, metadata = metad, path = tempdir(), dbFile = "CompDb.test.sqlite")
We can now load this toy database using the CompDb()
function providing the
full path to the database file. Note that we load the database in read-write
mode by specifying flags = RSQLite::SQLITE_RW
- by default CompDb()
will
load databases in read-only mode hence ensuring that the data within the
database can not be compromised. In our case we would however like to add more
information to this database later and hence we load it in read-write mode.
cdb <- CompDb(db_file, flags = RSQLite::SQLITE_RW) cdb
We can now retrieve annotations from the database with the compound()
function.
compounds(cdb)
Or also search and filter the annotations.
compounds(cdb, filter = ~ name %in% c("B", "A"))
Next we would like to add also MS2 spectra data to the database. This could be
either done directly in the createCompDb()
call with parameter msms_spectra
,
or with the insertSpectra()
function that allows to add MS2 spectra data to an
existing CompDb
which can be provided as a Spectra
object. We thus below
manually create a Spectra
object with some arbitrary MS2 spectra -
alternatively, Spectra
can be imported from a variety of input sources,
including MGF or MSP files using e.g. the r Biocpkg("MsBackendMgf")
or
r Biocpkg("MsBackendMsp")
packages.
#' Define basic spectra variables df <- DataFrame(msLevel = 2L, precursorMz = c(124.4, 124.4, 235.5)) #' Add m/z and intensity information for each spectrum df$mz <- list( c(3, 20, 59.1), c(2, 10, 30, 59.1), c(100, 206, 321.1)) df$intensity <- list( c(10, 13, 45), c(5, 8, 9, 43), c(10, 20, 400)) #' Create the Spectra object sps <- Spectra(df)
The Spectra
object needs also to have a variable (column) called
"compound_id"
which provides the information with which existing compound in
the database the spectrum is associated.
compounds(cdb, "compound_id") sps$compound_id <- c("CP_0001", "CP_0001", "CP_0002")
We can also add additional information to the spectra, such as the instrument.
sps$instrument <- "AB Sciex TripleTOF 5600+"
And we can now add these spectra to our existing toy CompDb
. Parameter
columns
allows to specify which of the spectra variables should be stored
into the database.
cdb <- insertSpectra(cdb, spectra = sps, columns = c("compound_id", "msLevel", "precursorMz", "instrument")) cdb
We have thus now a CompDb
database with compound annotations and 3 MS2
spectra. We could for example also retrieve the MS2 spectra for the compound
with the name A from the database with:
Spectra(cdb, filter = ~ name == "A")
CompDb
from MoNA dataMoNa (Massbank of North America) provides a large SDF file with all spectra
which can be used to create a CompDb
object with compound information and
MS/MS spectra. Note however that MoNa is organized by spectra and the annotation
of the compounds is not consistent and normalized. Spectra from the same
compound can have their own compound identified and data that e.g. can differ in
their chemical formula, precision of their exact mass or other fields.
Similar to the example above, compound annotations can be imported with the
compound_tbl_sdf()
function while spectrum data can be imported with
msms_spectra_mona()
. In the example below we use however the
import_mona_sdf()
that wraps both functions to reads both compound and
spectrum data from a SDF file without having to import the file twice. As an
example we use a small subset from a MoNa SDF file that contains only 7 spectra.
mona_sub <- system.file("sdf/MoNa_export-All_Spectra_sub.sdf.gz", package = "CompoundDb") mona_data <- import_mona_sdf(mona_sub)
As a result we get a list
with a data.frame each for compound and spectrum
information. These can be passed along to the createCompDb()
function to
create the database (see below).
metad <- make_metadata(source = "MoNa", url = "http://mona.fiehnlab.ucdavis.edu/", source_version = "2018.11", source_date = "2018-11", organism = "Unspecified") mona_db_file <- createCompDb(mona_data$compound, metadata = metad, msms_spectra = mona_data$msms_spectrum, path = tempdir())
We can now load and use this database, e.g. by extracting all compounds as shown below.
mona <- CompDb(mona_db_file) compounds(mona)
As stated in the introduction of this section the compound
information
contains redundant information and the table has essentially one row per
spectrum. Feedback on how to reduce the redundancy in the ms_compound table is
highly appreciated.
CompDb
by sequentially filling with data {#sec:fill}As an alternative to creating a full database from an existing resource it is
also possible to create an empty CompDb
database and sequentially filling it
with data. This could for example be used to create a laboratory specific
annotation library with compound, ion and fragment spectra of pure standards
measured on a certain LC-MS setup. Below we create an empty CompDb
database
providing the file name of the database. In the example we store the database to
a temporary file but in a real use case a meaningful file name and file path
should be used instead.
dbfile <- tempfile() mydb <- emptyCompDb(dbfile) mydb
We next define some first compound annotation we want to add to the
database. For compound annotations, fields "compound_id"
(an arbitrary ID of
the compound), "name"
(the compound name), "inchi"
, "inchikey"
,
"formula"
(the chemical formula) and "exactmass"
(the monoisotopic mass) are
expected, but, except of "compound_id"
, they can also contain missing values
or be completely omitted. Below we define a data.frame
with annotations for
some compounds and add this annotation to the database using the
insertCompound()
function.
cmp <- data.frame(compound_id = c("1", "2"), name = c("Caffeine", "Glucose"), formula = c("C8H10N4O2", "C6H12O6"), exactmass = c(194.080375584, 180.063388116)) mydb <- insertCompound(mydb, cmp) mydb
We next add fragment spectra for the compounds. These could for example
represent MS2 spectra measured for the pure standard of the compound and could
be extracted for example from r Biocpkg("xcms")
result objects or other
sources. Below we load some fragment spectra for caffeine from an MGF file
distributed with this package. We use the r BiocStyle::Biocpkg("MsBackendMgf")
package to import that data into a Spectra
object.
library(MsBackendMgf) caf_ms2 <- Spectra(system.file("mgf", "caffeine.mgf", package = "CompoundDb"), source = MsBackendMgf()) caf_ms2
We can evaluate what spectra variables are available in the imported data.
spectraVariables(caf_ms2) caf_ms2$rtime
There are many variables available, but most of them, like for example the
retention time, or not defined as this information was not provided in the MGF
file. In order to associate these fragment spectra to the caffeine compound we
just added to the database, we need to assign them the ID of the compound (in
our case "1"
).
caf_ms2$compound_id <- "1"
We can then add the spectra to the database using the insertSpectra()
function. With parameter columns
we specify which of the spectra variables we
actually want to store in the database.
mydb <- insertSpectra(mydb, caf_ms2, columns = c("compound_id", "msLevel", "splash", "precursorMz", "collisionEnergy")) mydb
We thus have now 2 compounds in the database and 2 fragment spectra:
compounds(mydb) sps <- Spectra(mydb) sps$name
With insertCommpound()
and insertSpectra()
further compounds and fragment
spectra could be added to the database. Note that both functions support also to
add additional columns (fields or variables) to the database. As an example
we define below a compound with an arbitrary additional column and add this to
the database using parameter addColumns = TRUE
.
cmps <- data.frame(compound_id = "3", name = "X003", formula = "C5H2P3O", extra_field = "artificial compound") mydb <- insertCompound(mydb, cmps, addColumns = TRUE) compounds(mydb)
The additional column is now available in the database. Existing entries in a
CompDb
can also be deleted using the deleteCompound()
or deleteSpectra()
functions. Both require as additional input the IDs of the compound(s) (or
spectra) to delete. Below we extract the IDs and names of the compounds from our
database.
compounds(mydb, columns = c("compound_id", "name"))
We can now delete the compound "X003"
with deleteCompound()
and the ID of
this compound.
mydb <- deleteCompound(mydb, ids = "3") compounds(mydb)
Note that deleting a compound with associated spectra (or ions) will result in
an error, thus it would not be possible to delete caffeine from the database,
because it contains also MS2 spectra for that compound. Using parameter
recursive = TRUE
in the deleteCompound()
call would however allow to delete
the compound and all associated spectra (and/or ions) along with it. Below
we delete thus caffeine and the associated MS2 spectra which leaves us a
CompDb
with a single compound and no more MS2 spectra.
mydb <- deleteCompound(mydb, ids = "1", recursive = TRUE) compounds(mydb) Spectra(mydb)
Note that these functions can also be used to add or remove annotations to/from
any CompDb
database, as long as the database is writeable (i.e. the database
is loaded by specifying flags = RSQLite::SQLITE_RW
as additional parameter to
the CompDb
call to load the database).
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.