##' Likelihood method to obtain p-value for differential R2.
##'
##' Likelihood method to obtain p-value for differential R2.
##' @title Likelihood method to obtain p-value for differential R2.
##' @param tt1 Time vector of condition 1
##' @param yy1 Expression vector of condition 1
##' @param tt2 Time vector of condition 2
##' @param yy2 Expression vector of condition 2
##' @param period Period of the since curve. Default is 24.
##' @return P-value for delta R2.
##' Formula 1: \eqn{yy = amp \times sin(2\pi/period \times (phase + tt)) + offset}
##' Formula 2: \eqn{yy = A \times sin(2\pi/period \times tt) + B * cos(2*pi/period * tt) + offset}
##' @author Caleb
##' @export
##' @examples
##' set.seed(32608)
##' n <- 50
##' tt1 <- runif(n,0,24)
##' Amp1 <- 2
##' Phase1 <- 6
##' Offset1 <- 3
##' yy1 <- Amp1 * sin(2*pi/24 * (tt1 + Phase1)) + Offset1 + rnorm(n,0,1)
##' tt2 <- runif(n,0,24)
##' Amp2 <- 3
##' Phase2 <- 5
##' Offset2 <- 2
##' yy2 <- Amp2 * sin(2*pi/24 * (tt2 + Phase2)) + Offset2 + rnorm(n,0,1)
##' LR_deltaR2(tt1, yy1, tt2, yy2)
LR_deltaR2 <- function(tt1, yy1, tt2, yy2, period = 24, FN=TRUE){
n1 <- length(tt1)
stopifnot(n1 == length(yy1))
n2 <- length(tt2)
stopifnot(length(tt2) == length(yy2))
#period <- 24
w <- 2*pi/period
fit1 <- fitSinCurve(tt1, yy1, period = 24)
fit2 <- fitSinCurve(tt2, yy2, period = 24)
A1 <- fit1$amp
A2 <- fit2$amp
phase1 <- fit1$phase
phase2 <- fit2$phase
E1 <- A1 * cos(w * phase1)
F1 <- A1 * sin(w * phase1)
E2 <- A2 * cos(w * phase2)
F2 <- A2 * sin(w * phase2)
basal1 <- fit1$offset
basal2 <- fit2$offset
sigma2_1 <- 1/n1 * fit1$rss
sigma2_2 <- 1/n2 * fit2$rss
theta1 <- 1/sigma2_1
theta2 <- 1/sigma2_2
p1 <- c(E1, F1, basal1, theta1)
p2 <- c(E2, F2, basal2, theta2)
x_Ha <- c(p1, p2)
asin1 <- sin(w * tt1)
acos1 <- cos(w * tt1)
asin2 <- sin(w * tt2)
acos2 <- cos(w * tt2)
eval_f_list <- function(x,asin1,acos1,asin2,acos2) {
p1 <- x[1:4]
p2 <- x[5:8]
E1 <- p1[1]
F1 <- p1[2]
basel1 <- p1[3]
theta1 <- p1[4]
yhat1 <- E1 * asin1 + F1 * acos1 + basel1
E2 <- p2[1]
F2 <- p2[2]
basel2 <- p2[3]
theta2 <- p2[4]
yhat2 <- E2 * asin2 + F2 * acos2 + basel2
ll1_a <- log(theta1)/2
ll1_b <- (yy1 - yhat1)^2 * theta1 / 2
ll1 <- ll1_a - ll1_b
ll2_a <- log(theta2)/2
ll2_b <- (yy2 - yhat2)^2 * theta2 / 2
ll2 <- ll2_a - ll2_b
partial_E1 <- - theta1 * sum((yy1 - yhat1) * asin1)
partial_F1 <- - theta1 * sum((yy1 - yhat1) * acos1)
partial_C1 <- - theta1 * sum(yy1 - yhat1)
partial_theta1 <- sum((yy1 - yhat1)^2)/2 - n1/2/theta1
partial_E2 <- - theta2 * sum((yy2 - yhat2) * asin2)
partial_F2 <- - theta2 * sum((yy2 - yhat2) * acos2)
partial_C2 <- - theta2 * sum(yy2 - yhat2)
partial_theta2 <- sum((yy2 - yhat2)^2)/2 - n2/2/theta2
return( list( "objective" = -sum(ll1) - sum(ll2),
"gradient" = c(partial_E1, partial_F1, partial_C1, partial_theta1,
partial_E2, partial_F2, partial_C2, partial_theta2)
)
)
}
# Equality constraints
eval_g_eq <- function(x,asin1,acos1,asin2,acos2)
{
p1 <- x[1:4]
p2 <- x[5:8]
E1 <- p1[1]
F1 <- p1[2]
#basel1 <- p1[3]
theta1 <- p1[4]
#yhat1 <- E1 * asin1 + F1 * acos1 + basel1
E2 <- p2[1]
F2 <- p2[2]
#basel2 <- p2[3]
theta2 <- p2[4]
#yhat2 <- E2 * asin2 + F2 * acos2 + basel2
A2_1 <- (E1^2 + F1^2)
A2_2 <- (E2^2 + F2^2)
A2_1 * theta1 - A2_2 * theta2
}
# Equality constraints
eval_g_eq_jac <- function(x,asin1,acos1,asin2,acos2)
{
p1 <- x[1:4]
p2 <- x[5:8]
E1 <- p1[1]
F1 <- p1[2]
#basel1 <- p1[3]
theta1 <- p1[4]
#yhat1 <- E1 * asin1 + F1 * acos1 + basel1
E2 <- p2[1]
F2 <- p2[2]
#basel2 <- p2[3]
theta2 <- p2[4]
#yhat2 <- E2 * asin2 + F2 * acos2 + basel2
A2_1 <- (E1^2 + F1^2)
A2_2 <- (E2^2 + F2^2)
A2_1 * theta1 - A2_2 * theta2
c(theta1 * 2 * E1, theta1 * 2 * F1, 0, A2_1,
- theta2 * 2 * E2, - theta2 * 2 * F2, 0, - A2_2)
}
# Lower and upper bounds
lb <- c(-Inf,-Inf,-Inf,0, -Inf, -Inf,-Inf, 0)
ub <- c(Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf)
#initial values
## Error in is.nloptr(ret) :
# If you want to use equality constraints, then you should use one of these algorithms NLOPT_LD_AUGLAG, NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG_EQ, NLOPT_LN_AUGLAG_EQ, NLOPT_GN_ISRES, NLOPT_LD_SLSQP
local_opts <- list( "algorithm" = "NLOPT_LD_MMA", "xtol_rel" = 1.0e-15 )
"local_opts" = local_opts
opts <- list( "algorithm"= "NLOPT_LD_SLSQP",
"xtol_rel"= 1.0e-15,
"maxeval"= 160000,
"local_opts" = local_opts,
"print_level" = 0
#"check_derivatives"=TRUE
)
res <- nloptr ( x0 = x_Ha,
eval_f = eval_f_list,
#eval_grad_f=eval_g,
lb = lb,
ub = ub,
#eval_g_ineq = eval_g_ineq,
eval_g_eq = eval_g_eq,
eval_jac_g_eq = eval_g_eq_jac,
opts = opts,
asin1=asin1,
acos1=acos1,
asin2=asin2,
acos2=acos2)
#
#x_Ha
x_H0 <- res$solution
l0 <- - eval_f_list(x_H0,asin1,acos1,asin2,acos2)$objective
la <- - eval_f_list(x_Ha,asin1,acos1,asin2,acos2)$objective
LR_stat <- -2*(l0-la)
dfdiff <- 1
if(!FN){
pvalue <- pchisq(LR_stat,dfdiff,lower.tail = F)
} else if(FN){
r <- 1
k <- 6
n <- n1+n2
Fstat <- (exp(LR_stat/n) - 1) * (n-k) / r
pvalue <- pf(Fstat,df1 = r, df2 = n-k, lower.tail = F)
} else{
stop("FN has to be TRUE or FALSE")
}
pvalue
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.