TCGAvisualize_oncoprint | R Documentation |
Creating a oncoprint
TCGAvisualize_oncoprint(
mut,
genes,
filename,
color,
annotation.position = "bottom",
annotation,
height,
width = 10,
rm.empty.columns = FALSE,
show.column.names = FALSE,
show.row.barplot = TRUE,
label.title = "Mutation",
column.names.size = 8,
label.font.size = 16,
rows.font.size = 16,
dist.col = 0.5,
dist.row = 0.5,
information = "Variant_Type",
row.order = TRUE,
col.order = TRUE,
heatmap.legend.side = "bottom",
annotation.legend.side = "bottom"
)
mut |
A dataframe from the mutation annotation file (see TCGAquery_maf from TCGAbiolinks) |
genes |
Gene list |
filename |
name of the pdf |
color |
named vector for the plot |
annotation.position |
Position of the annotation "bottom" or "top" |
annotation |
Matrix or data frame with the annotation. Should have a column bcr_patient_barcode with the same ID of the mutation object |
height |
pdf height |
width |
pdf width |
rm.empty.columns |
If there is no alteration in that sample, whether remove it on the oncoprint |
show.column.names |
Show column names? Default: FALSE |
show.row.barplot |
Show barplot annotation on rows? |
label.title |
Title of the label |
column.names.size |
Size of the fonts of the columns names |
label.font.size |
Size of the fonts |
rows.font.size |
Size of the fonts |
dist.col |
distance between columns in the plot |
dist.row |
distance between rows in the plot |
information |
Which column to use as information from MAF. Options: 1) "Variant_Classification" (The information will be "Frame_Shift_Del", "Frame_Shift_Ins", "In_Frame_Del", "In_Frame_Ins", "Missense_Mutation", "Nonsense_Mutation", "Nonstop_Mutation", "RNA", "Silent" , "Splice_Site", "Targeted_Region", "Translation_Start_Site") 2) "Variant_Type" (The information will be INS,DEL,SNP) |
row.order |
Order the genes (rows) Default:TRUE. Genes with more mutations will be in the first rows |
col.order |
Order columns. Default:TRUE. |
heatmap.legend.side |
Position of the heatmap legend |
annotation.legend.side |
Position of the annotation legend |
A oncoprint plot
## Not run:
library(dplyr)
query <- GDCquery(
project = "TCGA-CHOL",
data.category = "Simple Nucleotide Variation",
access = "open",
legacy = FALSE,
data.type = "Masked Somatic Mutation",
workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
mut <- GDCprepare(query)
TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE)
TCGAvisualize_oncoprint(
mut = mut, genes = mut$Hugo_Symbol[1:10],
filename = "onco.pdf",
color = c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown")
)
clin <- GDCquery_clinic("TCGA-ACC","clinical")
clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")]
TCGAvisualize_oncoprint(
mut = mut, genes = mut$Hugo_Symbol[1:20],
filename = "onco.pdf",
annotation = clin,
color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"),
rows.font.size=10,
heatmap.legend.side = "right",
dist.col = 0,
label.font.size = 10
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.