knitr::opts_chunk$set(dpi = 300) knitr::opts_chunk$set(cache = FALSE)
library(TCGAbiolinks)
library(SummarizedExperiment) library(dplyr) library(DT)
TCGAanalyze_Stemness
If you use this function please also cite:
Malta TM, Sokolov A, Gentles AJ, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173(2):338-354.e15. (doi:10.1016/j.cell.2018.03.034)
The input data are: - a matrix (samples as columns, Gene names as rows) - the signature to calculate the correlation score.
Possible scores are:
# Selecting TCGA breast cancer (10 samples) for example stored in dataBRCA dataNorm <- TCGAanalyze_Normalization( tabDF = dataBRCA, geneInfo = geneInfo ) # quantile filter of genes dataFilt <- TCGAanalyze_Filtering( tabDF = dataNorm, method = "quantile", qnt.cut = 0.25 ) data(SC_PCBC_stemSig) Stemness_score <- TCGAanalyze_Stemness( stemSig = SC_PCBC_stemSig, dataGE = dataFilt ) data(ECTO_PCBC_stemSig) ECTO_score <- TCGAanalyze_Stemness( stemSig = ECTO_PCBC_stemSig, dataGE = dataFilt, colname.score = "ECTO_PCBC_stem_score" ) data(MESO_PCBC_stemSig) MESO_score <- TCGAanalyze_Stemness( stemSig = MESO_PCBC_stemSig, dataGE = dataFilt, colname.score = "MESO_PCBC_stem_score" )
head(Stemness_score) head(ECTO_score) head(MESO_score)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.