library(GO)
library(Category)
library(ppiStats)
library(ppiData)
library("org.Sc.sgd.db")
library("GOstats")
yeastGenome <- names(as.list(org.Sc.sgdALIAS))
##------------------------------------------------------------------------------------------
cat("\n\nThis first code chunk will calculate the hypergeometric tests on the PFam Domains
to determine over-representation wrt viable baits/prey agains the genome. The resulting
data is saved in the R objects overVBGen and overVPGen", sep="" )
##------------------------------------------------------------------------------------------
parameterVB <- lapply(viableBaits, function(x,y){new("PFAMHyperGParams",
geneIds=x,
universeGeneIds=yeastGenome,
annotation="org.Sc.sgd",
testDirection="over",
pvalueCutoff=0.01)})
hgTestVB <- lapply(parameterVB, hyperGTest)
overVBGen <- lapply(hgTestVB, function(x) {names(which(pvalues(x)<0.01))})
parameterVP <- lapply(viablePrey, function(x,y){new("PFAMHyperGParams",
geneIds=x,
universeGeneIds=yeastGenome,
annotation="org.Sc.sgd",
testDirection="over",
pvalueCutoff=0.01)})
hgTestVP <- lapply(parameterVP, hyperGTest)
overVPGen <- lapply(hgTestVP, function(x) {names(which(pvalues(x)<0.01))})
##------------------------------------------------------------------------------------------
cat("\n\nNow we will set up the various parameters to conduct the hypergeometric tests
for biased proteins against the viable bait/prey populations", sep="")
##------------------------------------------------------------------------------------------
bpGraphs <- lapply(bpExperimentNames, get) ## could use 'mget'
vbp <- mapply(function(x,y){intersect(x,y)},viableBaits,viablePrey)
vbpGraph <- mapply(function(x,y){subGraph(x, get(y))},vbp,bpExperimentNames)
vbpStochastic <- lapply(vbpGraph, function(x) {if(length(nodes(x))!=0) idStochastic(x, bpGraph=TRUE)})
vbpSystematic <- mapply(function(x,y){setdiff(nodes(x),y)},vbpGraph,vbpStochastic)
vbpSysNonTriv <- which(sapply(vbpSystematic,length) != 0)
vbpSys <- vbpSystematic[vbpSysNonTriv]
vbp1 <- vbp[vbpSysNonTriv]
viableBaits <- viableBaits[vbpSysNonTriv]
viablePrey <- viablePrey[vbpSysNonTriv]
##------------------------------------------------------------------------------------------
cat("\n\nThis last code chunk will calculate the hypergeometric tests on the PFam Domains
to determine over-representation wrt biased proteins agains the VB and VP. The resulting
data is saved in the R objects overSysVB and overSysVP", sep="" )
##------------------------------------------------------------------------------------------
parameterSB <- mapply(function(x,y){new("PFAMHyperGParams",
geneIds=x,
universeGeneIds=y,
annotation="org.Sc.sgd",
testDirection="over",
pvalueCutoff=0.01)},
vbpSys,viableBaits)
hgTestSB <- lapply(parameterSB, hyperGTest)
overSysVB <- lapply(hgTestSB, function(x) {names(which(pvalues(x)<0.01))})
parameterSP <- mapply(function(x,y){new("PFAMHyperGParams",
geneIds=x,
universeGeneIds=y,
annotation="org.Sc.sgd",
testDirection="over",
pvalueCutoff=0.01)},
vbpSys,viablePrey)
hgTestSP <- lapply(parameterSP, hyperGTest)
overSysVP <- lapply(hgTestSP, function(x) {names(which(pvalues(x)<0.01))})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.