normalize.AffyBatch.invariantset <- function(abatch, prd.td=c(0.003,0.007), verbose=FALSE,baseline.type=c("mean","median","pseudo-mean","pseudo-median"),type=c("separate","pmonly","mmonly","together")) {
do.normalize.Affybatch.invariantset <- function(abatch, pms, prd.td, baseline.type){
nc <- length(abatch) # number of CEL files
if (baseline.type == "mean"){
# take as a reference the array having the median overall intensity
m <- vector("numeric", length=nc)
for (i in 1:nc)
m[i] <- mean(intensity(abatch)[pms, i])
refindex <- match(trunc(median(rank(m))), rank(m))
rm(m)
baseline.chip <- c(intensity(abatch)[pms, refindex])
if (verbose) cat("Data from", sampleNames(abatch)[refindex], "used as baseline.\n")
}
else if (baseline.type == "median"){
# take as a reference the array having the median median intensity
m <- vector("numeric", length=nc)
for (i in 1:nc)
m[i] <- median(intensity(abatch)[pms, i])
refindex <- match(trunc(median(rank(m))), rank(m))
rm(m)
baseline.chip <- c(intensity(abatch)[pms, refindex])
if (verbose) cat("Data from", sampleNames(abatch)[refindex], "used as baseline.\n")
} else if (baseline.type == "pseudo-mean"){
# construct a psuedo chip to serve as the baseline by taking probewise means
refindex <- 0
baseline.chip <- rowMeans(intensity(abatch)[pms,])
} else if (baseline.type == "pseudo-median"){
# construct a pseudo chip to serve as the baseline by taking probewise medians
refindex <- 0
baseline.chip <- rowMedians(intensity(abatch)[pms,])
}
##set.na.spotsd(cel.container)
normhisto <- vector("list", length=nc)
# normhisto[[refindex]] <- list(name="reference for the invariant set")
## loop over the CEL files and normalize them
for (i in (1:nc)) {
if (i != refindex){
if (verbose) cat("normalizing array", sampleNames(abatch)[i], "...")
##temporary
tmp <- normalize.invariantset(c(intensity(abatch)[pms, i]),
c(baseline.chip),
prd.td)
#i.set <- which(i.pm)[tmp$i.set]
tmp <- as.numeric(approx(tmp$n.curve$y, tmp$n.curve$x,
xout=intensity(abatch)[pms, i], rule=2)$y)
attr(tmp,"invariant.set") <- NULL
intensity(abatch)[pms, i] <- tmp
## storing information about what has been done
#normhisto[[i]] <- list(name="normalized by invariant set",
# invariantset=i.set)
if (verbose) cat("done.\n")
}
}
attr(abatch, "normalization") <- normhisto
return(abatch)
}
type <- match.arg(type)
baseline.type <- match.arg(baseline.type)
if (type == "pmonly"){
pms <- unlist(pmindex(abatch))
do.normalize.Affybatch.invariantset(abatch, pms, prd.td, baseline.type)
} else if (type == "mmonly"){
pms <- unlist(mmindex(abatch))
do.normalize.Affybatch.invariantset(abatch, pms, prd.td, baseline.type)
} else if (type == "together"){
pms <- unlist(indexProbes(abatch,"both"))
do.normalize.Affybatch.invariantset(abatch, pms, prd.td, baseline.type)
} else if (type == "separate"){
pms <- unlist(pmindex(abatch))
abatch <- do.normalize.Affybatch.invariantset(abatch, pms, prd.td, baseline.type)
pms <- unlist(mmindex(abatch))
do.normalize.Affybatch.invariantset(abatch, pms, prd.td, baseline.type)
}
}
## The 'common-to-all' part of the algorithm. Operates on two vectors of numeric data
##
normalize.invariantset <- function(data, ref, prd.td=c(0.003,0.007)) {
np <- length(data)
r.ref <- rank(ref)
r.array <- rank(data)
## init
prd.td.adj <- prd.td*10 # adjusted threshold things
i.set <- rep(TRUE, np) # index all the PM probes as being in the invariant set
ns <- sum(i.set) # number of probes in the invariant set
ns.old <- ns+50+1 # number of probes previously in the invariant set
## iterate while the number of genes in the invariant set (ns) still varies...
while ( (ns.old-ns) > 50 ) {
air <- (r.ref[i.set] + r.array[i.set]) / (2*ns) # average intensity rank for the probe intensities
prd <- abs(r.ref[i.set] - r.array[i.set]) / ns
threshold <- (prd.td.adj[2]-prd.td[1]) * air + prd.td.adj[1]
i.set[i.set] <- (prd < threshold)
ns.old <- ns
ns <- sum(i.set)
if (prd.td.adj[1] > prd.td[1])
prd.td.adj <- prd.td.adj * 0.9 # update the adjusted threshold parameters
}
## the index i.set corresponds to the 'invariant genes'
n.curve <- smooth.spline(ref[i.set], data[i.set])
## n.curve$x contains smoothed reference intensities
## n.curve$y contains smoothed i-th array intensities
##data <- as.numeric(approx(n.curve$y, n.curve$x, xout=data)$y)
##attr(data,"invariant.set") <- i.set
##return(data)
return(list(n.curve=n.curve, i.set=i.set))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.