# Wang et al., 2015
# Raw data obtained from: ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE62nnn/GSE62936/matrix/
########################################################################################
# Raw data processing
########################################################################################
# Process the raw data so that all FPKM are in one file:
temp.1.df <- read.table(gzfile("GSM1536664_LW01_genes.csv.gz"), sep = ",", header = TRUE)
temp.2.df <- read.table(gzfile("GSM1536665_LW02_genes.csv.gz"), sep = ",", header = TRUE)
temp.3.df <- read.table(gzfile("GSM1536666_LW03_genes.csv.gz"), sep = ",", header = TRUE)
temp.4.df <- read.table(gzfile("GSM1536667_LW04_genes.csv.gz"), sep = ",", header = TRUE)
temp.5.df <- read.table(gzfile("GSM1536668_LW05_genes.csv.gz"), sep = ",", header = TRUE)
temp.6.df <- read.table(gzfile("GSM1536669_LW06_genes.csv.gz"), sep = ",", header = TRUE)
temp.7.df <- read.table(gzfile("GSM1536670_LW07_genes.csv.gz"), sep = ",", header = TRUE)
temp.9.df <- read.table(gzfile("GSM1536671_LW09_genes.csv.gz"), sep = ",", header = TRUE)
temp.10.df <- read.table(gzfile("GSM1536672_LW10_genes.csv.gz"), sep = ",", header = TRUE)
temp.11.df <- read.table(gzfile("GSM1536673_LW11_genes.csv.gz"), sep = ",", header = TRUE)
temp.12.df <- read.table(gzfile("GSM1536674_LW12_genes.csv.gz"), sep = ",", header = TRUE)
temp.13.df <- read.table(gzfile("GSM1536675_LW13_genes.csv.gz"), sep = ",", header = TRUE)
temp.14.df <- read.table(gzfile("GSM1536676_LW14_genes.csv.gz"), sep = ",", header = TRUE)
temp.1.df <- cbind(as.character(temp.1.df$gene_id), temp.1.df$FPKM)
temp.2.df <- cbind(as.character(temp.2.df$gene_id), temp.2.df$FPKM)
temp.3.df <- cbind(as.character(temp.3.df$gene_id), temp.3.df$FPKM)
temp.4.df <- cbind(as.character(temp.4.df$gene_id), temp.4.df$FPKM)
temp.5.df <- cbind(as.character(temp.5.df$gene_id), temp.5.df$FPKM)
temp.6.df <- cbind(as.character(temp.6.df$gene_id), temp.6.df$FPKM)
temp.7.df <- cbind(as.character(temp.7.df$gene_id), temp.7.df$FPKM)
temp.9.df <- cbind(as.character(temp.9.df$gene_id), temp.9.df$FPKM)
temp.10.df <- cbind(as.character(temp.10.df$gene_id), temp.10.df$FPKM)
temp.11.df <- cbind(as.character(temp.11.df$gene_id), temp.11.df$FPKM)
temp.12.df <- cbind(as.character(temp.12.df$gene_id), temp.12.df$FPKM)
temp.13.df <- cbind(as.character(temp.13.df$gene_id), temp.13.df$FPKM)
temp.14.df <- cbind(as.character(temp.14.df$gene_id), temp.14.df$FPKM)
data.df <- cbind(as.character(temp.1.df$gene_id), temp.1.df$FPKM,
temp.2.df$FPKM,
temp.3.df$FPKM,
temp.4.df$FPKM,
temp.5.df$FPKM,
temp.6.df$FPKM,
temp.7.df$FPKM,
temp.9.df$FPKM,
temp.10.df$FPKM,
temp.11.df$FPKM,
temp.12.df$FPKM,
temp.13.df$FPKM,
temp.14.df$FPKM
)
data.df <- as.data.frame(data.df)
colnames(data.df) <- c("gene_symbol",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14")
write.table(data.df, file = "GSE62936_Wang_hES_iPSC_neurons_FPKM.csv", sep = ",") # Save file output
########################################################################################
# LONGO processing information
########################################################################################
# Species: Hsapiens
# Gene ID: external_gene_name
# Quantile normalized
# Data filtered (>1 cpm for at least 4 samples)
# Sliding median
# Multi probe values averaged
# Bin size: 200
# Step size: 40
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.