The santaR
package is designed for the detection of significantly altered time trajectories between study groups, in short time-series.
As the visualisation of significantly altered time-trajectories is critical to the interpretation of the process under study, this vignette will detail the plotting options present in santaR
. santaR_plot()
returns a ggplot2 plotObject
that can be further modified using ggplot2
grammar.
First we can analyse a subset of data using santaR_auto_fit()
, returning a list of SANTAObj.
library(santaR) # Load a subset of the example data tmp_data <- acuteInflammation$data[,1:6] tmp_meta <- acuteInflammation$meta # Analyse data, with confidence bands and p-value res_acuteInf_df5 <- santaR_auto_fit(inputData=tmp_data, ind=tmp_meta$ind, time=tmp_meta$time, group=tmp_meta$group, df=5, ncores=0, CBand=TRUE, pval.dist=FALSE)
Each variable can be accessed either by its list position or variable name:
# Default plot # individual points, individual trajectories, group mean curves and confidence bands # access by list position santaR_plot(res_acuteInf_df5[[5]]) # access by variable name santaR_plot(res_acuteInf_df5$var_5)
The individual points, trajectories, group mean curves and confidence bands can be turned on or off:
# only groupMeanCurve santaR_plot(res_acuteInf_df5$var_5, showIndPoint=FALSE, showIndCurve=FALSE, showGroupMeanCurve=TRUE, showConfBand=TRUE) # only Individuals santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=FALSE, showConfBand=FALSE) # add confidence bands (only available if previously calculated) santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=TRUE, showConfBand=TRUE) # add a totalMeanCurve (grey) santaR_plot(res_acuteInf_df5$var_5, showTotalMeanCurve=TRUE )
Title and axis can be altered to suit the analysis:
# add title santaR_plot(res_acuteInf_df5$var_5, title='A figure title') # remove the legend santaR_plot(res_acuteInf_df5$var_5, title='A variable, no legend', legend=FALSE) # force purple and green color santaR_plot(res_acuteInf_df5$var_5, title='A variable in different colors', colorVect = c('purple','green')) # Default colors are in order: "blue", "red", "green", "orange", "purple", "seagreen", "darkturquoise", "violetred", "saddlebrown", "black" # add x and y labels santaR_plot(res_acuteInf_df5$var_5, title='Different axis labels', xlab='Time', ylab='Variable value')
santaR_plot()
returns a ggplot2 plotObject
that can be modified using all the range of ggplot2
grammar:
library(ggplot2) # add x and y labels by adding it outside the plotting function [not useful but shows that any ggplot command can be added to the plot] santaR_plot(res_acuteInf_df5$var_5, title='A variable') + xlab('Time') + ylab('Variable value') # Constrain the x axis (will remove points and raise warnings) santaR_plot(res_acuteInf_df5$var_5, showConfBand=FALSE, title='A variable', xlab='Time', ylab='Variable value') + xlim(0,48) # Looser y limits santaR_plot(res_acuteInf_df5$var_5, title='A variable', xlab='Time', ylab='Variable value') + ylim(-2,5)
Plots can be stored in a variables and combined in multiplots using gridExtra grid.arrange()
:
library(gridExtra) # store plot in a variable, plot multiple variables... p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value') plot(p1) p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value') # multiplot grid.arrange(p1, p2) # force them side by side grid.arrange(p1, p2, ncol=2) # Force both plots on the same y limits (remove legend from plots) p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value', legend=FALSE) p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value', legend=FALSE) p1 <- p1 + ylim(-1.2, 4.2) p2 <- p2 + ylim(-1.2, 4.2) grid.arrange(p1, p2, ncol=2 )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.