knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
if (getRversion() >= "3.6") { knitr::opts_chunk$set(eval = FALSE) } required <- c("faahKO") if (!all(unlist(lapply(required, function(pkg) requireNamespace(pkg, quietly = TRUE))))) { knitr::opts_chunk$set(eval = FALSE) }
Package for Peak Picking and ANnoTation of High resolution Experiments in R, implemented in R
and Shiny
peakPantheR
implements functions to detect, integrate and report pre-defined features in MS files.
It is designed for:
multiple
compounds in one
file at a timemultiple
compounds in multiple
files in parallel
, store results in a single
objectInstall the development version of the package directly from GitHub with:
# Install devtools if(!require("devtools")) install.packages("devtools") devtools::install_github("phenomecentre/peakPantheR")
If the dependencies mzR
and MSnbase
are not successfully installed, Bioconductor
must be added to the default repositories with:
setRepositories(ind=1:2)
Both real time and parallel compound integration require a common set of information:
netCDF
/ mzML
MS file(s)RT
/ m/z
window) for each compound.The faahKO
package provides with a set of MS spectra that we can use for peakPantheR
annotation and is installed as follow:
setRepositories(ind=1:4) install.packages('faahKO')
# hide package load message library(faahKO)
library(faahKO) ## file paths input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), system.file('cdf/KO/ko16.CDF', package = "faahKO"), system.file('cdf/KO/ko18.CDF', package = "faahKO"))
library(faahKO) input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), system.file('cdf/KO/ko16.CDF', package = "faahKO"), system.file('cdf/KO/ko18.CDF', package = "faahKO")) input_spectraPaths
A table of targeted features contains as column:
cpdID
(numeric)cpdName
(character)rtMin
(sec)rtMax
(sec)rt
(sec, optional / NA
)mzMin
(m/z)mzMax
(m/z)mz
(m/z, optional / NA
)# targetFeatTable input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=F) input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)], as.numeric)
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=F) input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)], as.numeric) rownames(input_targetFeatTable) <- NULL pander::pandoc.table(input_targetFeatTable, digits = 9)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.