Nothing
#' Run enrichment analysis procedure
#'
#' This is a generic function that chooses an enrichment analysis procedure
#' based on the model class and runs the analysis.
#' @param model An S4 object which represents one of mulea's tests
#' (ORA or GSEA). See details
#' for more information.
#' @details The function requires the definition of a model. Models currently
#' implemented in mulea include Gene Set Enrichment Analysis (GSEA) and
#' Over-Representation Analysis (ORA). These models must be defined through
#' their specific functions which are provided in this package.
#' @seealso \code{\link{gsea}}, \code{\link{ora}}
#' @export
#' @examples
#' library(mulea)
#'
#' # loading and filtering the example ontology from a GMT file
#' tf_gmt <- read_gmt(file = system.file( package="mulea", "extdata",
#' "Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
#' tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,
#' max_nr_of_elements = 400)
#'
#' # loading the example data
#' sign_genes <- readLines(system.file(package = "mulea", "extdata",
#' "target_set.txt"))
#' background_genes <- readLines(system.file(package="mulea", "extdata", "
#' background_set.txt"))
#'
#' # creating the ORA model
#' ora_model <- ora(gmt = tf_gmt_filtered,
#' # the test set variable
#' element_names = sign_genes,
#' # the background set variable
#' background_element_names = background_genes,
#' # the p-value adjustment method
#' p_value_adjustment_method = "eFDR",
#' # the number of permutations
#' number_of_permutations = 10000,
#' # the number of processor threads to use
#' nthreads = 2)
#' # running the ORA
#' ora_results <- run_test(ora_model)
#'
#' @return Results in form of `data.frame`. Structure of `data.frame` depends on
#' object processed by this generic method.
#' In the case of `run_test` was used with the model generated
#' by the `ora` function the returned
#' `data.frame` contains the following columns:
#'
#' 1. 'ontology_id': Identifiers of the ontology elements.
#' 2. 'ontology_name': Names of the ontology elements.
#' 3. 'nr_common_with_tested_elements': Number of common elements between the
#' ontology element and the vector defined by the element_names parameter
#' of the `ora` function.
#' 4. 'nr_common_with_background_elements': Number of common elements between
#' the ontology element and the vector defined by the
#' background_element_names parameter of the `ora` function.
#' 5. 'p_value': The raw *p*-value of the overrepresentation analysis.
#' 6. The adjusted *p*-value.
#' The column named based on the
#' p_value_adjustment_method parameter of the
#' `ora` function, *e.g.* 'eFDR'
#'
#' In the case of `run_test` was used with the model
#' generated by the `gsea` function the returned
#' `data.frame` contains the following columns:
#'
#' 1. 'ontology_id': Identifiers of the ontology elements.
#' 2. 'ontology_name': Names of the ontology elements.
#' 3. 'nr_common_with_tested_elements': Number of common elements between the
#' ontology element and the vector defined by the element_names parameter
#' of the `gsea` function.
#' 4. 'p_value': The raw *p*-value of the gene set enrichment analysis.
#' 5. 'adjusted_p_value': The adjusted *p*-value.
#' @importFrom methods new
setGeneric("run_test", function(model)
standardGeneric("run_test"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.