Nothing
## ----setup, include = FALSE----------------------------------------------
library('randomForest')
library('data.table')
library('stats')
library('binomialRF')
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo=T, warning=F, message=F----------------------------------------
set.seed(324)
### Generate multivariate normal data in R10
X = matrix(rnorm(1000), ncol=10)
### let half of the coefficients be 0, the other be 10
trueBeta= c(rep(3,2), rep(0,8))
### do logistic transform and generate the labels
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = rbinom(100,1,pr)
## ---- echo=FALSE, results='asis'-----------------------------------------
knitr::kable(head(cbind(round(X,2),y), 10))
## ----echo=T, warning=F, message=F----------------------------------------
require(correlbinom)
rho = 0.33
ntrees = 250
cbinom = correlbinom(rho, successprob = 1/ncol(X), trials = ntrees,
precision = 1024, model = 'kuk')
## ----echo=T, warning=F, message=F----------------------------------------
binom.rf <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = .6,
fdr.method = 'BY', user_cbinom_dist = cbinom,
sampsize = round(nrow(X)*.33))
print(binom.rf)
## ----echo=F, warning=F, message=F----------------------------------------
# set.seed(324)
binom.rf <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = 1,
fdr.method = 'BY', user_cbinom_dist = cbinom, sampsize = round(nrow(X)*.33))
cat('\n\nbinomialRF 100%\n\n')
print(binom.rf)
binom.rf <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = .8,
fdr.method = 'BY', user_cbinom_dist = cbinom, sampsize = round(nrow(X)*.33))
cat('\n\nbinomialRF 80%\n\n')
print(binom.rf)
binom.rf <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = .6,
fdr.method = 'BY', user_cbinom_dist = cbinom, sampsize = round(nrow(X)*.33))
cat('\n\nbinomialRF 60%\n\n')
print(binom.rf)
## ----echo=F, warning=F, message=F----------------------------------------
set.seed(324)
binom.rf1000 <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = .5,
fdr.method = 'BY', user_cbinom_dist = cbinom, sampsize = round(nrow(X)*.33))
rho = 0.33
ntrees = 500
cbinom = correlbinom(rho, successprob = 1/ncol(X), trials = ntrees, precision = 1024, model = 'kuk')
binom.rf500 <- binomialRF::binomialRF(X,factor(y), fdr.threshold = .05,
ntrees = ntrees,percent_features = .5,
fdr.method = 'BY', user_cbinom_dist = cbinom, sampsize = round(nrow(X)*.33))
cat('\n\nbinomialRF 250 trees\n\n')
print(binom.rf500)
cat('\n\nbinomialRF 500 trees \n\n')
print(binom.rf1000)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.