Nothing
# Fit the log-additive model assuming *homoscedastic* error terms.
# Each data element can be given a weight. Moreover, if there
# are missing values, these will be given zero weights.
setMethodS3("fitWLAPLM", "matrix", function(y, ...) {
# Explicit call to avoid method dispatching overheads.
fitWLAPLM.matrix(y, ..., maxIterations=1)
})
setMethodS3("fitWHLAPLM", "matrix", function(y, ...) {
K <- nrow(y)
I <- ncol(y)
y <- log2(y)
thetaIdxs <- seq_len(I)
phiIdxs <- I+seq_len(K)
fit <- fitWHRCModel.matrix(y, ...)
est <- fit$Estimates
se <- fit$StdErrors
# Chip effects
thetaIdxs <- 1:I
beta <- est[thetaIdxs]
theta <- 2^beta
# Probe affinities
phiIdxs <- (I+1):(I+K)
alpha <- est[phiIdxs]
alpha[K] <- -sum(alpha[1:(K-1)])
phi <- 2^alpha
# The RMA model is already fitted with constraint prod(phi) = 1.
# No rescaling needed.
seTheta <- 2^(se[thetaIdxs])
sePhi <- 2^(se[phiIdxs])
fit$theta <- theta
fit$seTheta <- seTheta
fit$phi <- phi
fit$sePhi <- sePhi
fit
}) # fitWHLAPLM()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.