fitGenotypeConeBySfit.matrix | R Documentation |
Fits an affine transformation to allele A and allele B data using robust estimators.
## S3 method for class 'matrix'
fitGenotypeConeBySfit(y, alpha=c(0.1, 0.075, 0.05, 0.03, 0.01), q=2, Q=98, ...)
y |
A |
alpha |
A |
q , Q |
Percentiles in [0,100] for which data points that are below (above) will be assigned zero weight in the fitting of the parameters. |
... |
Additional arguments passed to the |
Returns the parameter estimates as a named list
with elements:
M |
An estimate of the three vertices defining the genotype
triangle. These three vertices are describes as an 2x3 |
Minv |
The inverse of |
origin |
The estimate of the shift. |
W |
The estimate of shear/rotation matrix with columns
|
Winv |
The inverse of |
params |
The parameters used for the fit, i.e.
|
dimData |
The dimension of the input data. |
Henrik Bengtsson
To backtransform data fitted using this method,
see backtransformGenotypeCone
().
Internally, the cfit()
function the sfit package is used.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Fit genotype cone based on available methods (==packages)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
flavors <- c("expectile", "sfit")
## The 'expectile' package does not do proper S3 registration
if (getRversion() >= "3.6.0") flavors <- setdiff(flavors, "expectile")
keep <- sapply(flavors, FUN=require, character.only=TRUE)
flavors <- flavors[keep]
cat("Available fitting flavors:", paste(flavors, collapse=", "), "\n")
hasSfit <- is.element("sfit", flavors)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Simulate data (taken from the cfit.matrix() example of 'sfit')
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#set.seed(0xbeef)
N <- 1000
# Simulate genotypes
g <- sample(c("AA", "AB", "AB", "BB"), size=N, replace=TRUE)
# Simulate concentrations of allele A and allele B
X <- matrix(rexp(N), nrow=N, ncol=2)
colnames(X) <- c("A", "B")
X[g == "AA", "B"] <- 0
X[g == "BB", "A"] <- 0
X[g == "AB",] <- X[g == "AB",] / 2
# Transform noisy X
xi <- matrix(rnorm(2*N, mean=0, sd=0.05), ncol=2)
a0 <- c(0,0)+0.3
A <- matrix(c(0.9, 0.1, 0.1, 0.8), nrow=2, byrow=TRUE)
A <- apply(A, MARGIN=2, FUN=function(u) u / sqrt(sum(u^2)))
Z <- t(a0 + A %*% t(X + xi))
# Add noise to Y
eps <- matrix(rnorm(2*N, mean=0, sd=0.05), ncol=2)
Y <- Z + eps
lim <- c(-1/2,6)
xlab <- "Allele A"
ylab <- "Allele B"
plot(Y, xlab=xlab, ylab=ylab, xlim=lim, ylim=lim)
lines(x=c(0,0,2*lim[2]), y=c(2*lim[2],0,0), col="#aaaaaa", lwd=3, lty=3)
# Different alpha sequences to illustrate the impact
alphas <- c(0.075, 0.05, 0.01, 0.03, 0.002, 0.001)
cols <- seq(from=2, to=length(alphas)+1)
legend("topright", sprintf("%.3f", alphas), col=cols, lwd=4, title="Alphas")
for (kk in seq_along(alphas)) {
for (flavor in flavors) {
fit <- fitGenotypeCone(Y, alpha=alphas[kk], flavor=flavor)
YN <- backtransformGenotypeCone(Y, fit=fit)
if (hasSfit) {
radials(fit$M, lwd=3, col=cols[kk], lty=ifelse(flavor == "sfit", 1,2))
drawApex(fit$M, col=cols[kk], pch=19, cex=2)
}
points(YN, col=cols[kk])
}
}
lines(x=c(0,0,2*lim[2]), y=c(2*lim[2],0,0), col="#aaaaaa", lwd=3, lty=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.