Nothing
## ----echo=FALSE---------------------------------------------------------------
knitr::opts_chunk$set(eval = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# unloadNamespace("RCPA")
# library(RCPA)
# library(SummarizedExperiment)
# library(ggplot2)
# library(gridExtra)
## ----eval=FALSE---------------------------------------------------------------
# # User-defined directory to save the downloaded data
# downloadPath <- file.path(getwd(), "GSE5281")
# # Create the directory if it does not exist
# if(!dir.exists(downloadPath)) dir.create(downloadPath)
# # download the data
# downloadedFiles <- RCPA::downloadGEO(GEOID = "GSE5281", platform = "GPL570", protocol = "affymetrix", destDir = downloadPath)
## ----eval=FALSE---------------------------------------------------------------
# # read the metadata file
# affySampleInfo <- read.csv(file.path(downloadPath, "metadata.csv"))
#
# # read the CEL files
# affyExprs <- RCPA::processAffymetrix(dir = downloadPath, samples = affySampleInfo$geo_accession)
#
# # create the SummarizedExperiment object
# affyDataset <- SummarizedExperiment::SummarizedExperiment(assays = affyExprs, colData = affySampleInfo)
## ----eval=FALSE---------------------------------------------------------------
# # Access to assay data
# affyExprs <- SummarizedExperiment::assay(affyDataset)
# # Access to sample information
# affySampleInfo <- SummarizedExperiment::colData(affyDataset)
## ----eval=FALSE---------------------------------------------------------------
# # User-defined directory to save the downloaded data
# downloadPath <- file.path(getwd(), "GSE61196")
# # Create the directory if it does not exist
# if(!dir.exists(downloadPath)) dir.create(downloadPath)
# # download the data
# downloadedFiles <- RCPA::downloadGEO(GEOID = "GSE61196", platform = "GPL4133", protocol = "agilent", destDir = downloadPath)
## ----eval=FALSE---------------------------------------------------------------
# # read the metadata file
# agilSampleInfo <- read.csv(file.path(downloadPath, "metadata.csv"))
#
# # read the TXT files
# agilExprs <- processAgilent(dir = downloadPath, samples = agilSampleInfo$geo_accession, greenOnly = FALSE)
#
# # create the SummarizedExperiment object
# agilDataset <- SummarizedExperiment::SummarizedExperiment(assays = agilExprs, colData = agilSampleInfo)
## ----eval=FALSE---------------------------------------------------------------
# # Access to assay data
# agilExprs <- SummarizedExperiment::assay(agilDataset)
# # Access to sample information
# agilSampleInfo <- SummarizedExperiment::colData(agilDataset)
## ----eval=FALSE---------------------------------------------------------------
# # Specify the GEO accession ID
# GEOID <- "GSE153873"
# # Create a download path
# downloadPath <- getwd()
# if(!dir.exists(downloadPath)) dir.create(downloadPath)
# # Download the data
# GEOquery::getGEOSuppFiles(GEOID, fetch_files = TRUE, baseDir = downloadPath)
## ----eval=FALSE---------------------------------------------------------------
# # Specify the path to the downloaded read counts file
# countsFile <- file.path(downloadPath, GEOID, "GSE153873_summary_count.star.txt.gz")
# # Read the downloaded file
# countsData <- read.table(countsFile, header = TRUE, sep = "\t", fill = 0, row.names = 1, check.names = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# # Download the GEO object to get metadata
# GEOObject <- GEOquery::getGEO(GEOID, GSEMatrix = T, getGPL = T, destdir = downloadPath)
# # Check the length of GEOObject
# print(length(GEOObject))
# # Extract the dataset from the GEOObject
# samplesData <- GEOObject[[1]]
# # Export sample data
# metadata <- Biobase::pData(samplesData)
## ----eval=FALSE---------------------------------------------------------------
# # Get the sample IDs in the GEO accession ID form
# sampleIDs <- rownames(metadata)
# # Get the sample titles
# sampleTitles <- metadata[, "title"]
# # Reorder the columns in the assay data
# countsData <- countsData[,sampleTitles]
# # Assign sample IDs to columns' labels
# colnames(countsData) <- sampleIDs
## ----eval=FALSE---------------------------------------------------------------
# # Create the SummarizedExperiment object
# RNASeqDataset <- SummarizedExperiment::SummarizedExperiment(
# assays = as.matrix(countsData),
# colData = metadata
# )
## ----eval=FALSE---------------------------------------------------------------
# # GSE5281
# # Add a column specifying the condition of the sample, which can be either normal or alzheimer
# affySampleInfo$condition <- ifelse(grepl("normal", affySampleInfo$characteristics_ch1.8), "normal", "alzheimer")
# # Factorize the newly added column
# affySampleInfo$condition <- factor(affySampleInfo$condition)
# # Add the new column specify the region of the sample tissue
# # and use make.names to remove special characters
# affySampleInfo$region <- make.names(affySampleInfo$characteristics_ch1.4)
# # Factorize the newly added column
# affySampleInfo$region <- factor(affySampleInfo$region)
# # Update the affyDataset object
# SummarizedExperiment::colData(affyDataset) <- affySampleInfo
## ----eval=FALSE---------------------------------------------------------------
# # GSE5281
# # Create a design matrix
# affyDesign <- model.matrix(~0 + condition + region + condition:region, data = SummarizedExperiment::colData(affyDataset))
# # Avoid special characters in column names
# colnames(affyDesign) <- make.names(colnames(affyDesign))
# # Create a constrast matrix
# affyContrast <- limma::makeContrasts(conditionalzheimer-conditionnormal, levels=affyDesign)
## ----eval=FALSE---------------------------------------------------------------
# # Run differential expression analysis
# affyDEExperiment <- RCPA::runDEAnalysis(affyDataset, method = "limma", design = affyDesign, contrast = affyContrast, annotation = "GPL570")
## ----eval=FALSE---------------------------------------------------------------
# # Extract the differential analysis result
# affyDEResults <- SummarizedExperiment::rowData(affyDEExperiment)
## ----eval=FALSE---------------------------------------------------------------
# # GSE61196
# colData(agilDataset)$condition <- ifelse(grepl("healthy", colData(agilDataset)$source_name_ch1), "normal", "alzheimer")
# colData(agilDataset)$condition <- factor(colData(agilDataset)$condition)
## ----eval=FALSE---------------------------------------------------------------
# # GSE61196
# agilDesign <- model.matrix(~0 + condition, data = colData(agilDataset))
# agilContrast <- limma::makeContrasts("conditionalzheimer-conditionnormal", levels=agilDesign)
## ----eval=FALSE---------------------------------------------------------------
# # GSE61196
# GPL4133Anno <- GEOquery::dataTable(GEOquery::getGEO("GPL4133"))@table
# GPL4133GeneMapping <- data.frame(FROM = GPL4133Anno$SPOT_ID, TO = as.character(GPL4133Anno$GENE), stringsAsFactors = F)
# GPL4133GeneMapping <- GPL4133GeneMapping[!is.na(GPL4133GeneMapping$TO), ]
## ----eval=FALSE---------------------------------------------------------------
# # GSE61196
# agilDEExperiment <- RCPA::runDEAnalysis(agilDataset, method = "limma", design = agilDesign, contrast = agilContrast, annotation = GPL4133GeneMapping)
## ----eval=FALSE---------------------------------------------------------------
# # GSE153873
# colData(RNASeqDataset)$condition <- ifelse(grepl("Alzheimer", colData(RNASeqDataset)$characteristics_ch1.1), "alzheimer", "normal")
## ----eval=FALSE---------------------------------------------------------------
# # GSE61196
# agilDesign <- model.matrix(~0 + condition, data = colData(agilDataset))
# agilContrast <- limma::makeContrasts("conditionalzheimer-conditionnormal", levels=agilDesign)
#
# # GSE153873
# RNASeqDesign <- model.matrix(~0 + condition, data = colData(RNASeqDataset))
# RNASeqContrast <- limma::makeContrasts("conditionalzheimer-conditionnormal", levels=RNASeqDesign)
## ----eval=FALSE---------------------------------------------------------------
# # GSE153873
# if (!require("org.Hs.eg.db", quietly = TRUE)) {
# BiocManager::install("org.Hs.eg.db")
# }
#
# library(org.Hs.eg.db)
# ENSEMBLMapping <- AnnotationDbi::select(org.Hs.eg.db, keys = rownames(RNASeqDataset), columns = c("SYMBOL", "ENTREZID"), keytype = "SYMBOL")
# colnames(ENSEMBLMapping) <- c("FROM", "TO")
## ----eval=FALSE---------------------------------------------------------------
# # GSE153873
# RNASeqDEExperiment <- RCPA::runDEAnalysis(RNASeqDataset, method = "DESeq2", design = RNASeqDesign, contrast = RNASeqContrast, annotation = ENSEMBLMapping)
## ----eval=FALSE---------------------------------------------------------------
# # GSE153873
# RNASeqDEExperiment <- RCPA::runDEAnalysis(RNASeqDataset, method = "edgeR", design = RNASeqDesign, contrast = RNASeqContrast, annotation = ENSEMBLMapping)
## ----eval=FALSE---------------------------------------------------------------
# # MA plots
# p1 <- RCPA::plotMA(rowData(affyDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("Affymetrix - GSE5281")
# p2 <- RCPA::plotMA(rowData(agilDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("Agilent - GSE61196")
# p3 <- RCPA::plotMA(rowData(RNASeqDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("RNASeq - GSE153873")
#
# gridExtra::grid.arrange(p1, p2, p3, ncol = 3)
## ----eval=FALSE---------------------------------------------------------------
# # Volcano plots
# p1 <- RCPA::plotVolcanoDE(rowData(affyDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("Affymetrix - GSE5281")
# p2 <- RCPA::plotVolcanoDE(rowData(agilDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("Agilent - GSE61196")
# p3 <- RCPA::plotVolcanoDE(rowData(RNASeqDEExperiment), logFCThreshold = 0.5) + ggplot2::ggtitle("RNASeq - GSE153873")
#
# gridExtra::grid.arrange(p1, p2, p3, ncol = 3)
## ----eval=FALSE---------------------------------------------------------------
# # All DE genes
# DEResults <- list(
# "Affymetrix - GSE5281" = rowData(affyDEExperiment),
# "Agilent - GSE61196" = rowData(agilDEExperiment),
# "RNASeq - GSE153873" = rowData(RNASeqDEExperiment)
# )
# # Up-regulated genes
# DEResultUps <- lapply(DEResults, function(df) df[!is.na(df$logFC) & df$logFC > 0,])
# # Down-regulated genes
# DEResultDowns <- lapply(DEResults, function(df) df[!is.na(df$logFC) & df$logFC < 0,])
#
# p1 <- RCPA::plotVennDE(DEResults) + ggplot2::ggtitle("All DE Genes")
# p2 <- RCPA::plotVennDE(DEResultUps) + ggplot2::ggtitle("Up-regulated DE Genes")
# p3 <- RCPA::plotVennDE(DEResultDowns) + ggplot2::ggtitle("Down-regulated DE Genes")
#
# gridExtra::grid.arrange(p1, p2, p3, ncol = 3)
## ----eval=FALSE---------------------------------------------------------------
# genesets <- RCPA::getGeneSets(database = "KEGG", org = "hsa")
## ----eval=FALSE---------------------------------------------------------------
# #The list of additional arguments passed to fgsea function
# fgseaArgsList <- list(minSize = 10, maxSize = Inf)
#
# #Geneset enrichment analysis
# affyFgseaResult <- runGeneSetAnalysis(affyDEExperiment, genesets,
# method = "fgsea", FgseaArgs = fgseaArgsList)
# agilFgseaResult <- runGeneSetAnalysis(agilDEExperiment, genesets,
# method = "fgsea", FgseaArgs = fgseaArgsList)
# RNASeqFgseaResult <- runGeneSetAnalysis(RNASeqDEExperiment, genesets,
# method = "fgsea", FgseaArgs = fgseaArgsList)
## ----eval=FALSE---------------------------------------------------------------
# affyORAResult <- runGeneSetAnalysis(affyDEExperiment, genesets,
# method = "ora", ORAArgs = list(pThreshold = 0.05))
#
## ----eval=FALSE---------------------------------------------------------------
# affyGSAResult <- runGeneSetAnalysis(affyDEExperiment, genesets, method = "gsa")
#
## ----eval=FALSE---------------------------------------------------------------
# affyKSResult <- runGeneSetAnalysis(affyDEExperiment, genesets, method = "ks")
#
## ----eval=FALSE---------------------------------------------------------------
# affyKSResult <- runGeneSetAnalysis(affyDEExperiment, genesets, method = "wilcox")
#
## ----eval=FALSE---------------------------------------------------------------
# spiaNetwork <- RCPA::getSPIAKEGGNetwork(org = "hsa", updateCache = FALSE)
#
## ----eval=FALSE---------------------------------------------------------------
# affySpiaResult <- runPathwayAnalysis(affyDEExperiment, spiaNetwork, method = "spia")
# agilSpiaResult <- runPathwayAnalysis(agilDEExperiment, spiaNetwork, method = "spia")
# RNASeqSpiaResult <- runPathwayAnalysis(RNASeqDEExperiment, spiaNetwork, method = "spia")
#
## ----eval=FALSE---------------------------------------------------------------
# cepaNetwork <- RCPA::getCePaPathwayCatalogue(org = "hsa", updateCache = FALSE)
#
## ----eval=FALSE---------------------------------------------------------------
# affyCepaORAResult <- runPathwayAnalysis(affyDEExperiment, cepaNetwork, method = "cepaORA")
#
## ----eval=FALSE---------------------------------------------------------------
# affyCepaGSAResult <- runPathwayAnalysis(affyDEExperiment, cepaNetwork, method = "cepaGSA")
#
## ----eval=FALSE---------------------------------------------------------------
# #Preparing the input list of DE results
# DEResults <- list(
# "Affymetrix - GSE5281" = rowData(affyDEExperiment),
# "Agilent - GSE61196" = rowData(agilDEExperiment),
# "RNASeq - GSE153873" = rowData(RNASeqDEExperiment)
# )
#
# #Calling the runDEMetaAnalysis with 'stouffer' as the selected method to combine PValues
# metaDEResult <- RCPA::runDEMetaAnalysis(DEResults, method = "stouffer")
## ----eval=FALSE---------------------------------------------------------------
# #Preparing the input list of enrichment results
# PAResults <- list(
# "Affymetrix - GSE5281" = affyFgseaResult,
# "Agilent - GSE61196" = agilFgseaResult,
# "RNASeq - GSE153873" = RNASeqFgseaResult
# )
#
# #Calling the runPathwayMetaAnalysis with 'stouffer' as the selected method to combine PValues
# metaPAResult <- RCPA::runPathwayMetaAnalysis(PAResults, method = "stouffer")
#
## ----eval=FALSE---------------------------------------------------------------
# PAResults <- list(
# "fgsea" = affyFgseaResult,
# "spia" = affySpiaResult
# )
#
# consensusPAResult <- RCPA::runConsensusAnalysis(PAResults, method = "weightedZMean")
#
## ----eval=FALSE---------------------------------------------------------------
# PAResults <- list(
# "Affymetrix - GSE5281" = affyFgseaResult,
# "Agilent - GSE61196" = agilFgseaResult,
# "RNASeq - GSE153873" = RNASeqFgseaResult,
# "Meta-analysis" = metaPAResult
# )
#
# PAREsultUps <- lapply(PAResults, function(df) df[df$normalizedScore > 0,])
# PAREsultDowns <- lapply(PAResults, function(df) df[df$normalizedScore < 0,])
#
# p1 <- RCPA::plotVennPathway(PAResults, pThreshold = 0.05) + ggplot2::ggtitle("All Significant Pathways")
# p2 <- RCPA::plotVennPathway(PAREsultUps, pThreshold = 0.05) + ggplot2::ggtitle("Significantly Up-regulated Pathways")
# p3 <- RCPA::plotVennPathway(PAREsultDowns, pThreshold = 0.05) + ggplot2::ggtitle("Significantly Down-regulated Pathways")
#
# gridExtra::grid.arrange(p1, p2, p3, ncol = 3)
## ----eval=FALSE---------------------------------------------------------------
# p1 <- RCPA::plotVolcanoPathway(affyFgseaResult, sideToLabel = "left") + ggtitle("Affymetrix - GSE5281")
# p2 <- RCPA::plotVolcanoPathway(agilFgseaResult, sideToLabel = "left") + ggtitle("Agilent - GSE61196")
# p3 <- RCPA::plotVolcanoPathway(RNASeqFgseaResult, sideToLabel = "left") + ggtitle("RNASeq - GSE153873")
# p4 <- RCPA::plotVolcanoPathway(metaPAResult, sideToLabel = "left") + ggtitle("Meta-analysis")
#
# gridExtra::grid.arrange(p1, p2, p3, p4, ncol = 4)
## ----eval=FALSE---------------------------------------------------------------
# selectedPathways <- c("path:hsa05010", "path:hsa05012", "path:hsa05014", "path:hsa05016", "path:hsa05017", "path:hsa05020", "path:hsa05022", "path:hsa04724", "path:hsa04727", "path:hsa04725", "path:hsa04728", "path:hsa04726", "path:hsa04720", "path:hsa04730", "path:hsa04723", "path:hsa04721", "path:hsa04722")
#
# resultsToPlot <- lapply(PAResults, function(df) df[df$ID %in% selectedPathways,])
#
# RCPA::plotBarChart(resultsToPlot) + ggplot2::ggtitle("FGSEA Analysis Results")
## ----eval=FALSE---------------------------------------------------------------
# RCPA::plotForest(resultsToPlot, yAxis = "name", statLims = c(-3.5, 3.5))
## ----eval=FALSE---------------------------------------------------------------
# RCPA::plotPathwayHeatmap(resultsToPlot, yAxis = "name")
## ----eval=FALSE---------------------------------------------------------------
# alzheimerGenes <- genesets$genesets[["path:hsa05010"]]
# genesToPlot <- head(metaDEResult[metaDEResult$ID %in% alzheimerGenes, ], 50)$ID
#
# genesAnnotation <- RCPA::getEntrezAnnotation(genesToPlot)
# labels <- genesAnnotation[genesToPlot, "Description"]
#
# genesOrderByFC <- order(metaDEResult[match(genesToPlot, metaDEResult$ID), "logFC"])
# resultsToPlot <- c(DEResults, list(metaDEResult))
# names(resultsToPlot) <- c(names(DEResults), "Meta-analysis")
#
# RCPA::plotDEGeneHeatmap(resultsToPlot, genesToPlot[genesOrderByFC],
# labels = labels[genesOrderByFC], negLog10pValueLims = c(0, 5), logFCLims = c(-1, 1)
# )
## ----eval=FALSE---------------------------------------------------------------
# pltObj <- RCPA::plotKEGGMap(DEResults, "hsa05010", stat = "logFC", pThreshold = 1, statLimit = 1)
# pltObj$plot
## ----eval=FALSE---------------------------------------------------------------
# genesetsToPlot <- metaPAResult$ID[order(metaPAResult$pFDR)][1:30]
#
# pltHtml <- RCPA::plotPathwayNetwork(
# PAResults,
# genesets = genesets,
# selectedPathways = genesetsToPlot,
# edgeThreshold = 0.75,
# mode = "continuous",
# statistic = "normalizedScore"
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.