Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----xcms faaKO, eval=FALSE, include=TRUE-------------------------------------
# library(BiocManager)
# library(xcms)
# install.packages("faahKO")
# library(faahKO)
# cdfpath <- system.file("cdf", package = "faahKO")
# cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
# # to point to your own directory
# # cdffiles <- list.files(utils::choose.dir(), recursive = TRUE, full.names = TRUE, pattern = ".cdf")
# # note: choose.dir() will bring up a window to browse to your directory
# # the pattern argument is case sensitive, ensure it matches your file type in a case sensitive
# # manner
# # see vignette('xcms') for xcms use and guidance
# xset <- xcmsSet(cdffiles) # detect features
# xset <- group(xset) # group features across samples by retention time and mass
# xset <- retcor(xset, family = "symmetric", plottype = NULL) # correct for drive in retention time
# xset <- group(xset, bw = 10) # regroup following rt correction
# xset <- fillPeaks(xset) # 'fillPeaks' to remove missing values in final dataset
## ----view xcms object summary, eval=FALSE, include=TRUE-----------------------
# xset
## ----ramclustR installation, eval=FALSE, include=TRUE-------------------------
# install.packages("devtools", repos="http://cran.us.r-project.org", dependencies=TRUE)
# library(devtools)
# install_github("cbroeckl/RAMClustR", build_vignettes = TRUE, dependencies = TRUE)
# library(RAMClustR)
## ----ramclustR of xcms processed faaKO, eval=FALSE, include=TRUE--------------
# experiment <- defineExperiment(csv = TRUE) # experiment <- defineExperiment(force.skip = TRUE)
# RC <- ramclustR(xcmsObj = xset, ExpDes=experiment)
## ----export csv, eval=FALSE, include=TRUE-------------------------------------
# write.csv(RC$SpecAbund, file="SpecAbund.csv", row.names=TRUE)
## ----csv input, eval=FALSE, include=TRUE--------------------------------------
# # make csv files - outcsv1 for real MS data, outcsv2 for 'fake' idMSMS data after adding some noise.
# outcsv1<-RC$MSdata
# outcsv2<-abs(jitter(outcsv1, factor = 0.1))
# write.csv(outcsv1, file = paste0(getwd(), "/msdata.csv"), row.names = TRUE)
# write.csv(outcsv2, file = paste0(getwd(), "/msmsdata.csv"), row.names = TRUE)
#
# # run ramclustR on those csv files
# # first the MS data only
#
# RC1 <- ramclustR(ms = paste0(getwd(), "/msdata.csv"),
# featdelim = "_",
# st = 5,
# ExpDes=experiment,
# sampNameCol = 1)
#
# # then the MS and MSMS data.
# # first we need to redefine our experiment, make sure to enter 'LC-MS' for plaform and '2' for the LC-MS MSlevs
# experiment <- defineExperiment(csv = TRUE)
# RC2 <- ramclustR(ms = paste0(getwd(), "/msdata.csv"),
# idmsms = paste0(getwd(), "/msmsdata.csv"),
# featdelim = "_",
# timepos = 2,
# st = 5,
# ExpDes=experiment,
# sampNameCol = 1)
## ----do.findmain, eval=FALSE, include=TRUE------------------------------------
# RC <- do.findmain(RC, mode = "positive", mzabs.error = 0.02, ppm.error = 10)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.