Nothing
## ----installAndLoadPackages,eval=FALSE,echo=TRUE-------------------------
#
# #Bioconductor package installation
# source("http://bioconductor.org/biocLite.R")
# biocLite(c("GEOquery","Biobase"))
# install.packages("MM2S", repos="http://cran.r-project.org")
#
# #CDF installation
# download.file(
# url = "http://mbni.org/customcdf/20.0.0/entrezg.download/hgu133plus2hsentrezgcdf_20.0.0.tar.gz",
# method = "auto",destfile = "hgu133plus2hsentrezgcdf_20.0.0.tar.gz")
# install.packages("hgu133plus2hsentrezgcdf_20.0.0.tar.gz",type = "source",repos=NULL)
#
# #Modified Affy package
# download.file(
# url = "http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/affy_1.48.0.tar.gz",
# method = "auto",destfile = "affy_1.48.0.tar.gz")
# install.packages("affy_1.48.0.tar.gz",type = "source",repos=NULL)
## ----Load Libraries,eval=FALSE-------------------------------------------
# suppressPackageStartupMessages(library(MM2S))
# suppressPackageStartupMessages(library(affy))
# suppressPackageStartupMessages(library(Biobase))
# suppressPackageStartupMessages(library(GEOquery))
# suppressPackageStartupMessages(library(hgu133plus2hsentrezgcdf))
## ----getDataFromGEO,eval=FALSE-------------------------------------------
# gse<-getGEOSuppFiles(GEO = "GSE37418")
# untar(tarfile = "./GSE37418/GSE37418_RAW.tar",exdir = "CelFiles")
## ----cleanAndNormalize,eval=FALSE----------------------------------------
#
# # Generate the Affy Expression Object
# affyRaw <- ReadAffy(celfile.path = "CelFiles",verbose = F,
# cdfname="hgu133plus2hsentrezgcdf",compress = T)
#
# # View object
# affyRaw
#
# #Perform Data Background Correction and Normalization
# eset <- expresso(affyRaw,bgcorrect.method="rma",normalize.method="quantiles",
# pmcorrect.method="pmonly",summary.method="medianpolish",verbose = FALSE)
# #Obtain the Microarray Expression Dataset
# datamatrix<-exprs(eset)
#
# # Polish the rownames (remove the _at from the Entrez IDs)
# rownames(datamatrix)<-gsub(rownames(datamatrix),pattern="_at",replacement="")
#
# # Create a new variable representing the cleaned microarray data that will be used in MM2S
# ExprMatrix<-datamatrix
## ----findHumanModelSubtypes,eval=FALSE-----------------------------------
# # Conduct Subtype Predictions the samples, save results in a XLS file
# HumanPreds<-MM2S.human(InputMatrix=ExprMatrix[,1:10],parallelize=4, seed=12345, tempdir())
## ----GeneratePredictionHeatmap,echo=TRUE,eval=FALSE----------------------
# # Now generate a heatmap of the predictions and save the results in a PDF file.
# # This indicates MM2S confidence perdictions for each sample .
# # We view the samples here.
# PredictionsHeatmap(InputMatrix=HumanPreds$Predictions,pdf_output=TRUE,pdfheight=12,pdfwidth=10)
## ----InstallingFromGithubExample,echo=TRUE-------------------------------
# library(Biobase)
# library(devtools)
# install_github(repo="DGendoo/MM2S")
# install_github(repo="DGendoo/MM2Sdata")
## ----sessionInfo,echo=FALSE,results="asis",eval=FALSE--------------------
# utils::toLatex(sessionInfo())
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.