tests/test07-pcanova.R

library(ClassDiscovery)
suppressWarnings( RNGversion("3.5.3") )
set.seed(581492)
# simulate data from three groups
d1 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d2 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d3 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
dd <- cbind(d1, d2, d3)
# colors that match the groups
cols <- rep(c('red', 'green', 'blue'), each=10)

# compute teh PCanova object
pan <- PCanova(dd, c('red', 'green', 'blue'), cols, cols)
summary(pan)

# view the PC plots
plot(pan)

# view the dendrograms
pltree(pan, line=-0.5)

# compare teh results when there is no underlying group structure
dd <- matrix(rnorm(100*50, rnorm(100, 0.5)), nrow=100, ncol=50, byrow=FALSE)
cols <- rep(c('red', 'green', 'blue', 'orange', 'cyan'), each=10)
pan <- PCanova(dd, unique(cols), cols, cols)
plot(pan, mscale=1/sqrt(10))

pltree(pan, line=-0.5)

# cleanup
rm(d1, d2, d3, dd, cols, pan)

Try the ClassDiscovery package in your browser

Any scripts or data that you put into this service are public.

ClassDiscovery documentation built on May 29, 2024, 2:25 a.m.