Nothing
context("Test simulation, initialization and epsilon.")
set.seed(13124)
BiocParallel::register(BiocParallel::SerialParam())
test_that("W can be estimated from random matrix (no signal)", {
nS <- 100 # sample size
nG <- 50 # number genes
K <- 2 # number of latent factors
W <- matrix(rnorm(nS*K),ncol = K)
X <- matrix(1, ncol = 1, nrow = nS)
V <- matrix(rnorm(nG), ncol = 1)
mm = zinbModel(X = X,
V = V,
W = W,
gamma_mu = matrix(1, ncol = nS),
beta_mu = matrix(5, ncol=nG))
my_data <- zinbSim(mm)
expect_equal(W, getW(mm))
expect_equal(X, getX_mu(mm))
expect_equal(X, getX_pi(mm))
expect_equal(V, getV_mu(mm))
expect_equal(V, getV_pi(mm))
SE <- SummarizedExperiment(assays = list(counts=my_data$counts),
rowDat = data.frame(V),
colDat = data.frame(X))
expect_warning(sf <- zinbFit(SE,
V = "~V - 1",
K = 2))
round(cor(cbind(W, sf@W)), 2)
})
test_that("W can be estimated from two-dimensional signal (no signal)", {
nS <- 100 # sample size
nG <- 50 # number genes
K <- 2 # number of latent factors
W <- matrix(c(rnorm(50, mean=5, sd=.1), rnorm(50, mean=1, sd=.1),
rnorm(10, mean=5, sd=.1), rnorm(90, mean=1, sd=.1)),ncol = K)
X <- matrix(1, ncol = 1, nrow = nS)
V <- matrix(rnorm(nG), ncol = 1)
mm = zinbModel(X = X,
V = V,
W = W,
gamma_mu = matrix(1, ncol = nS),
beta_mu = matrix(5, ncol=nG))
my_data <- zinbSim(mm)
expect_equal(W, getW(mm))
expect_equal(X, getX_mu(mm))
expect_equal(X, getX_pi(mm))
expect_equal(V, getV_mu(mm))
expect_equal(V, getV_pi(mm))
SE <- SummarizedExperiment(assays = list(counts=my_data$counts),
rowDat = data.frame(V),
colDat = data.frame(X))
sf = zinbFit(SE,
V = "~V - 1",
K = 2)
round(cor(cbind(W, sf@W)), 2)
})
test_that("Initialization works with large epsilon", {
nS <- 100 # sample size
nG <- 50 # number genes
K <- 2 # number of latent factors
W <- matrix(c(rnorm(50, mean=5, sd=.1), rnorm(50, mean=1, sd=.1),
rnorm(10, mean=5, sd=.1), rnorm(90, mean=1, sd=.1)),ncol = K)
X <- matrix(1, ncol = 1, nrow = nS)
V <- matrix(1, ncol = 1, nrow = nG)
mm = zinbModel(X = X,
V = V,
W = W,
gamma_mu = matrix(1, ncol = nS),
beta_mu = matrix(5, ncol=nG))
my_data <- zinbSim(mm)
SE <- SummarizedExperiment(assays = list(counts=my_data$counts))
expect_silent(sf <- zinbFit(SE, K = 2, epsilon = 1e4))
expect_silent(sf <- zinbFit(SE, K = 2, epsilon = 1e5))
expect_silent(sf <- zinbFit(SE, K = 2, epsilon = 1e12))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.