Nothing
## ----install from BioConductor, eval=FALSE------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("wpm")
## ----launch wpm, eval = FALSE-------------------------------------------------
# library(wpm)
# wpm()
## ---- echo=FALSE--------------------------------------------------------------
knitr::kable(data.frame("Sample" = c("s1","s2","s3","s4")))
## ---- echo=FALSE--------------------------------------------------------------
knitr::kable(
data.frame("Sample" = c("s1","s2","s3","s4"), "Type" = c("A","A","B","C"),
"Treatment" = c("trt1","tr1","Ctrl","Ctrl"))
)
## ----convert CSV file, eval = FALSE-------------------------------------------
# imported_csv <- wpm::convertCSV("path-to-CSV-file")
## ----create an MSnSet object--------------------------------------------------
sample_names <- c("s1","s2","s3","s4", "s5")
M <- matrix(NA, nrow = 4, ncol = 5)
colnames(M) <- sample_names
rownames(M) <- paste0("id", LETTERS[1:4])
pd <- data.frame(Environment = rep_len(LETTERS[1:3], 5),
Category = rep_len(1:2, 5), row.names = sample_names)
rownames(pd) <- colnames(M)
my_MSnSet_object <- MSnbase::MSnSet(exprs = M,pData = pd)
## ----convert ESet/MSnSet object-----------------------------------------------
df <- wpm::convertESet(my_MSnSet_object, "Environment")
## ----convert SummarizedExperiment object--------------------------------------
nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colData <- data.frame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
se <- SummarizedExperiment::SummarizedExperiment(assays=list(counts=counts),
colData=colData)
df <- wpm::convertSE(se, "Treatment")
## ----run wpm with a CSV file, eval=FALSE--------------------------------------
# wpm_result <- wpm::wrapperWPM(user_df = imported_csv$df_wpm,
# plate_dims = list(8,12),
# nb_plates = 1,
# forbidden_wells = "A1,A2,A3",
# fixed_wells = "B1,B2",
# spatial_constraint = "NS")
## ----run wpm------------------------------------------------------------------
wpm_result <- wpm::wrapperWPM(user_df = df,
plate_dims = list(8,12),
nb_plates = 1,
forbidden_wells = "A1,A2,A3",
fixed_wells = "B1,B2",
spatial_constraint = "NS")
## ----visualize plate map------------------------------------------------------
drawned_map <- wpm::drawMap(df = wpm_result,
sample_gps = length(levels(as.factor(colData$Treatment))),
gp_levels = gp_lvl <- levels(as.factor(colData$Treatment)),
plate_lines = 8,
plate_cols = 12,
project_title = "my Project Title")
## ----see the map--------------------------------------------------------------
drawned_map
## ----save map plot, eval=FALSE------------------------------------------------
# ggplot2::ggsave(
# filename = "my file name",
# plot = drawned_map,
# width = 10,
# height = 7,
# units = "in"
# )
## ---- eval = FALSE------------------------------------------------------------
# numberOfThePlate <- 1
# drawned_map <- wpm::drawMap(df = wpm_result[[numberOfThePlate]],
# sample_gps = length(levels(as.factor(pd$Environment))),
# gp_levels = gp_lvl <- levels(as.factor(pd$Environment)),
# plate_lines = 8,
# plate_cols = 12,
# project_title = "my Project Title")
## ----SessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.