Nothing
# Define the SlalomModel class for the package
#' The "Slalom Model" (Rcpp_SlalomModel) class
#'
#' S4 class and the main class used by slalom to hold model data and results.
#' SingleCellExperiment extends the Bioconductor SummarizedExperiment class.
#'
#' This class is initialized from a matrix of expression values and a collection
#' of genesets in a \code{GeneSetCollection} object from the GSEABase package.
#'
#' Methods that operate on SingleCellExperiment objects constitute the basic scater workflow.
#'
#' @section Slots:
#' \describe{
#' \item{\code{.xData}:}{Environment enabling access to the C++-level
#' SlalomModel object.}
#'}
#'
#' @details
#'
#' @name Rcpp_SlalomModel
#' @rdname Rcpp_SlalomModel
#' @aliases Rcpp_SlalomModel-class
#' @exportClass Rcpp_SlalomModel
setClass("Rcpp_SlalomModel",
slots = c(.xData = "environment")
)
# slots = c(K = "numeric",
# N = "numeric",
# G = "numeric",
# nScale = "numeric",
# nAnnotated = "numeric",
# nHidden = "numeric",
# nKnown = "numeric",
# noiseModel = "character",
# iUnannotatedDense = "integer",
# iUnannotatedSparse = "integer",
# nIterations = "integer",
# minIterations = "integer",
# iterationCount = "integer",
# forceIterations = "logical",
# tolerance = "numeric",
# shuffle = "logical",
# nOn = "numeric",
# onF = "numeric",
# doUpdate = "logical",
# learnPi = "logical",
# dropFactors = "logical",
# termNames = "character",
# geneNames = "character",
# cellNames = "character",
# I = "matrix",
# Known = "matrix",
# Y = "matrix",
# pseudo_Y = "matrix",
# YY = "matrix",
# ## alpha
# alpha_pa = "numeric",
# alpha_pb = "numeric",
# alpha_a = "numeric",
# alpha_b = "numeric",
# alpha_E1 = "numeric",
# alpha_lnE1 = "numeric",
# ## epsilon
# epsilon_pa = "numeric",
# epsilon_pb = "numeric",
# epsilon_a = "numeric",
# epsilon_b = "numeric",
# epsilon_E1 = "numeric",
# epsilon_lnE1 = "numeric",
# epsilon_diagSigmaS = "numeric",
# ## X
# X_E1 = "matrix",
# X_diagSigmaS = "numeric",
# X_init = "matrix",
# ## W
# W_E1 = "matrix",
# W_sigma2 = "matrix",
# W_E2diag = "matrix",
# W_gamma0 = "matrix",
# W_gamma1 = "matrix",
# ## Z
# Z_E1 = "matrix",
# Z_init = "matrix",
# ## Pi
# Pi_a = "numeric",
# Pi_pa = "numeric",
# Pi_pb = "numeric",
# Pi_b = "numeric",
# Pi_E1 = "numeric"
# )
#' \describe{
#' \item{\code{K}:}{Scalar of class \code{"numeric"}, indicating total number
#' of factors.}
#' \item{\code{N}:}{Scalar of class \code{"numeric"}, indicating number of
#' cells.}
#' \item{\code{G}:}{Scalar of class \code{"numeric"}, indicating number of
#' genes.}
#' \item{\code{nScale}:}{Scalar of class \code{"numeric"}, relative number of
#' cells to which the observed annotation data (gene sets) are scaled.}
#' \item{\code{nAnnotated}:}{Scalar of class \code{"numeric"}, number of
#' factors relating to annotated gene sets to model.}
#' \item{\code{nHidden}:}{Scalar of class \code{"numeric"}, number of hidden
#' (latent) factors to model.}
#' \item{\code{nKnown}:}{Scalar of class \code{"numeric"}, number of known
#' factors (covariates).}
#' \item{\code{noiseModel}:}{\code{"character"} scalar defining noise model
#' used by the model (default: "gauss" for Gaussian noise model.}
#' \item{\code{iUnannotatedDense}:}{\code{"integer"} vector giving indices for
#' dense unannotated (hidden) factors.}
#' \item{\code{iUnannotatedSparse}:}{\code{"integer"} vector giving indices for
#' sparse unannotated (hidden) factors.}
#' \item{\code{nOn}:}{Vector of class \code{"numeric"}, number of genes that
#' are "on" for each factor (as annotated).}
#' \item{\code{termNames}:}{\code{"character"} vector giving names for the gene
#' sets and factors.}
#' \item{\code{geneNames}:}{\code{"character"} vector giving gene names.}
#' \item{\code{cellNames}:}{\code{"character"} vector giving cell names.}
#' \item{\code{X}:}{\code{"list"} of values and parameters for factor states.}
#' \item{\code{W}:}{\code{"list"} of values and parameters for factor weights.}
#' \item{\code{Z}:}{\code{"list"} of values and parameters for activation
#' variable of whether factor k has a regulatory effect on gene g.}
#' \item{\code{alpha}:}{\code{"list"} of values and parameters for factor
#' precisions.}
#' \item{\code{epsilon}:}{\code{"list"} of values and parameters for residual
#' precisions.}
#' \item{\code{pi}:}{\code{"matrix"} of size G x K with each entry being the
#' prior probability for a gene g being active for factor k.}
#' \item{\code{I}:}{\code{"matrix"} of size G x K of observed annotation data
#' with each entry being the indicator that gene g is annotated to factor k.}
#' \item{\code{Known}:}{design \code{"matrix"} defining covariates to fit in
#' the model ("known factors").}
#' \item{\code{Y}:}{\code{"matrix"} of size N x G with each entry being the
#' observed expression value (normalized, log2-scale) for gene g in cell n.}
#' \item{\code{pseudo_Y}:}{\code{"matrix"} of size N x G with each entry
#' being the pseudoexpression value (normalized, log2-scale) for gene g in
#' cell n.}
#'}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.