Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, eval=FALSE--------------------------------------------------------
# library(shiny)
# library(Seurat)
# library(ggrepel)
# library(shinydashboard)
# library(schex)
# library(iSEE)
## ---- eval=FALSE--------------------------------------------------------------
# pbmc_small <- make_hexbin(pbmc_small, nbins = 10, dimension_reduction = "PCA")
# df_label <- make_hexbin_label(pbmc_small, "RNA_snn_res.0.8")
## ---- eval=FALSE--------------------------------------------------------------
# app <- shinyApp(
# server= function(input, output){
#
# output$all_genes <- renderUI({
# selectInput(inputId = "gene", label = "Gene",
# choices = rownames(pbmc_small))
# })
#
# output$plot1 <- renderPlot({
# plot_hexbin_meta(pbmc_small, "RNA_snn_res.0.8", action="majority",
# title="Clusters") + guides(fill=FALSE) +
# ggrepel::geom_label_repel(data=df_label,
# aes(x=x, y=y, label=label), colour="black",
# label.size=NA, fill=NA)
#
# })
#
# output$plot2 <- renderPlot({
# plot_hexbin_feature(pbmc_small, type=input$type, feature=input$gene,
# action=input$action, title=input$gene)
# })
#
#
# },
# ui= dashboardPage(skin = "purple",
# dashboardHeader(),
# dashboardSidebar(
# uiOutput("all_genes"),
# radioButtons("type", "Type of expression:",
# c("Raw" = "counts",
# "Normalized" = "data")),
# radioButtons("action", "Summarize using:",
# c("Proportion not 0" = "prop_0",
# "Mean" = "mean",
# "Median" = "median"))
#
# ),
# dashboardBody(
# fluidRow(
# box(plotOutput("plot1", width = 450, height=400), width=6),
# box(plotOutput("plot2", width = 500, height=400), width=6))
# )
# )
# )
## ----convert, eval=FALSE------------------------------------------------------
# pbmc_small <- as.SingleCellExperiment(pbmc_small)
# pbmc_small <- make_hexbin(pbmc_small, nbins=10, dimension_reduction = "PCA")
## ---- eval=FALSE--------------------------------------------------------------
# plot_hexbin_gene_new <- function(sce, rows=NULL, rownames=character(0),
# columns=NULL, type="logcounts", action="prop_0"){
#
# plot_hexbin_feature(sce, type=type, feature=rownames, action=action)
# }
## ---- eval=FALSE--------------------------------------------------------------
# schex_plot_gene <- customDataPlotDefaults(pbmc_small, 1)
# schex_plot_gene$Function <- "plot_hexbin_gene_new"
# schex_plot_gene$Arguments <- "type counts\naction prop_0\nrownames ODC1"
# schex_plot_gene$ColumnSource <- "NULL"
# schex_plot_gene$RowSource <- "NULL"
# schex_plot_gene$DataBoxOpen <- TRUE
#
#
# app <- iSEE(
# pbmc_small,
# customDataArgs=schex_plot_gene,
# initialPanels=DataFrame(
# Name=c("Custom data plot 1"),
# Width=c(12)),
# customDataFun=list(plot_hexbin_gene_new=plot_hexbin_gene_new)
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.