Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(ggplot2)
theme_set(theme_classic())
## ----setup, message=FALSE, eval=FALSE-----------------------------------------
# library(Seurat)
# library(schex)
## ----load, eval=FALSE---------------------------------------------------------
# cbmc.rna <- as.sparse(read.csv(file =
# "../new functions/data/GSE100866_CBMC_8K_13AB_10X-RNA_umi.csv.gz",
# sep = ",", header = TRUE, row.names = 1))
#
# cbmc.rna <- CollapseSpeciesExpressionMatrix(cbmc.rna)
#
# cbmc.adt <- as.sparse(read.csv(file =
# "../new functions/data/GSE100866_CBMC_8K_13AB_10X-ADT_umi.csv.gz",
# sep = ",", header = TRUE, row.names = 1))
#
# cbmc.adt <- cbmc.adt[setdiff(rownames(x = cbmc.adt),
# c("CCR5", "CCR7", "CD10")), ]
## ----preprocess-gene, eval=FALSE----------------------------------------------
# cbmc <- CreateSeuratObject(counts = cbmc.rna)
#
# cbmc <- NormalizeData(cbmc)
# cbmc <- FindVariableFeatures(cbmc)
# cbmc <- ScaleData(cbmc)
## ----cluster-gene, eval=FALSE-------------------------------------------------
# cbmc <- RunPCA(cbmc, verbose = FALSE)
# cbmc <- RunTSNE(cbmc, dims = 1:25, method = "FIt-SNE")
## ----preprocess-protein, eval=FALSE-------------------------------------------
# cbmc[["ADT"]] <- CreateAssayObject(counts = cbmc.adt)
#
# cbmc <- NormalizeData(cbmc, assay = "ADT", normalization.method = "CLR")
# cbmc <- ScaleData(cbmc, assay = "ADT")
## ----calc-hexbin, eval=FALSE--------------------------------------------------
# cbmc <- make_hexbin(cbmc, nbins = 25,
# dimension_reduction = "tsne", use_dims=c(1,2))
## ----plot-density, fig.height=7, fig.width=7, eval=FALSE----------------------
# plot_hexbin_density(cbmc)
## ----plot-feature, fig.height=7, fig.width=7, eval=FALSE----------------------
# plot_hexbin_feature(cbmc, mod="ADT", type="scale.data", feature="CD14",
# action="mean", xlab="TSNE1", ylab="TSNE2",
# title=paste0("Mean of protein expression of CD14"))
## ----plot-interact, fig.height=7, fig.width=7, message=FALSE, warning=FALSE, eval=FALSE----
# plot_hexbin_interact(cbmc, type=c("scale.data", "scale.data"),
# mod=c("RNA", "ADT"), feature=c("CD14", "CD14"), interact="corr_spearman",
# ylab="TSNE2", xlab="TSNE1",
# title="Interaction protein and gene expression CD14") +
# scale_fill_gradient2(midpoint=0, low="blue", mid="white",
# high="red", space ="Lab")
## ----protein-pca, message=FALSE, warning=FALSE, eval=FALSE--------------------
# DefaultAssay(cbmc) <- "ADT"
# cbmc <- RunPCA(cbmc, features = rownames(cbmc), reduction.name = "pca_adt",
# reduction.key = "pca_adt_", verbose = FALSE)
# cbmc <- make_hexbin(cbmc, nbins = 25,
# dimension_reduction = "pca_adt", use_dims=c(1,2))
## ----plot-feature-a, fig.height=7, fig.width=7, eval=FALSE--------------------
# plot_hexbin_feature(cbmc, mod="ADT", type="scale.data", feature="CD14",
# action="mean", xlab="TSNE1", ylab="TSNE2",
# title=paste0("Mean of protein expression of CD14"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.