Nothing
#' Contrastive Covariance Matrices
#'
#' @description Compute the list of contrastive covariance matrices.
#'
#' @param target The target (experimental) data set, in a standard format such
#' as a \code{data.frame} or \code{matrix}.
#' @param background The background data set, in a standard format such as a
#' \code{data.frame} or \code{matrix}.
#' @param contrasts A \code{numeric} vector of the contrastive parameters.
#' @param center A \code{logical} indicating whether the target and background
#' data sets should be centered to mean zero.
#' @param scale A \code{logical} indicating whether the target and background
#' data sets should be scaled to unit variance.
#'
#' @return A list of contrastive covariance matrices. Each element has an
#' associated contrastive parameter in the \code{contrasts} vector.
#'
#' @keywords internal
contrastiveCov <- function(target, background, contrasts, center, scale) {
# get the covariance matrices of the target and background
c_target <- covMat(target, center = center, scale = scale)
c_background <- covMat(background, center = center, scale = scale)
# get the list of contrastive covariance matrices
c_contrasts <- lapply(contrasts, function(x) {
c_target - x * c_background
})
# output
return(c_contrasts)
}
################################################################################
#' Parallelized Contrastive Covariance Matrices
#'
#' @description Compute the list of contrastive covariance matrices in parallel
#' using \code{\link[BiocParallel]{bplapply}}.
#'
#' @param target The target (experimental) data set, in a standard format such
#' as a \code{data.frame} or \code{matrix}.
#' @param background The background data set, in a standard format such as a
#' \code{data.frame} or \code{matrix}.
#' @param contrasts A \code{numeric} vector of the contrastive parameters.
#' @param center A \code{logical} indicating whether the target and background
#' data sets should be centered to mean zero.
#' @param scale A \code{logical} indicating whether the target and background
#' data sets should be scaled to unit variance.
#'
#' @return A list of contrastive covariance matrices. Each element has an
#' associated contrastive parameter in the \code{contrasts} vector.
#'
#' @importFrom BiocParallel bplapply
#'
#' @keywords internal
bpContrastiveCov <- function(target, background, contrasts, center, scale) {
# get the covariance matrices of the target and background
c_target <- covMat(target, center = center, scale = scale)
c_background <- covMat(background, center = center, scale = scale)
# get the list of contrastive covariance matrices
c_contrasts <- BiocParallel::bplapply(contrasts, function(x) {
c_target - x * c_background
})
# output
return(c_contrasts)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.