Nothing
## ---- eval = FALSE------------------------------------------------------------
# ## try http:// if https:// URLs are not supported
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("scFeatureFilter")
## ---- message=FALSE, warning=FALSE, collapse=TRUE-----------------------------
library(scFeatureFilter)
library(ggplot2)
library(cowplot) # multipanel figures + nice theme
## ---- collapse=TRUE-----------------------------------------------------------
# example dataset included with the package:
scData_hESC
# filtering of the dataset with a single function call:
sc_feature_filter(scData_hESC)
## ---- collapse=TRUE-----------------------------------------------------------
scData_hESC
## ---- collapse=TRUE-----------------------------------------------------------
calculate_cvs(scData_hESC)
## ---- collapse=TRUE-----------------------------------------------------------
library(magrittr) # to use the pipe %>%
calculate_cvs(scData_hESC) %>%
plot_mean_variance(colourByBin = FALSE)
## ---- collapse=TRUE-----------------------------------------------------------
scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 1000)
## ----collapse=TRUE------------------------------------------------------------
myPlot <- scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 1000) %>%
plot_mean_variance(colourByBin = TRUE, density_color = "blue")
myPlot
## ---- collapse=TRUE-----------------------------------------------------------
myPlot + annotation_logticks(sides = "l")
## ---- collapse=TRUE-----------------------------------------------------------
corDistrib <- scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 1000) %>%
correlate_windows(n_random = 3)
## ---- collapse=TRUE-----------------------------------------------------------
corDens <- correlations_to_densities(corDistrib, absolute_cc = TRUE)
plot_correlations_distributions(corDens, facet_ncol = 5) +
scale_x_continuous(breaks = c(0, 0.5, 1), labels = c("0", "0.5", "1"))
## ---- collapse=TRUE-----------------------------------------------------------
metrics <- get_mean_median(corDistrib)
metrics
plot_correlations_distributions(corDens, metrics = metrics, facet_ncol = 5) +
scale_x_continuous(breaks = c(0, 0.5, 1), labels = c("0", "0.5", "1"))
## ---- collapse=TRUE-----------------------------------------------------------
plot_metric(metrics, show_ctrl = FALSE, show_threshold = FALSE)
## ---- collapse=TRUE-----------------------------------------------------------
plot_metric(metrics, show_ctrl = TRUE, show_threshold = FALSE)
## ---- collapse=TRUE-----------------------------------------------------------
plot_metric(metrics, show_ctrl = TRUE, show_threshold = TRUE, threshold = 2)
## ---- collapse=TRUE-----------------------------------------------------------
determine_bin_cutoff(metrics, threshold = 2)
## ---- collapse=TRUE-----------------------------------------------------------
binned_data <- scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 1000)
metrics <- correlate_windows(binned_data, n_random = 3) %>%
get_mean_median
filtered_data <- filter_expression_table(
binned_data,
bin_cutoff = determine_bin_cutoff(metrics)
)
dim(scData_hESC)
dim(filtered_data)
filtered_data
## ---- message=FALSE, warning=FALSE, collapse=TRUE-----------------------------
library(SingleCellExperiment)
library(scRNAseq) # example datasets
sce_allen <- ReprocessedAllenData()
# sce_allen is an SingleCellExperiment object
sce_allen
filtered_allen <- sc_feature_filter(sce_allen, sce_assay = "rsem_tpm")
is.matrix(filtered_allen) # filtered_allen is a tibble
sce_filtered_allen <- sce_allen[rownames(filtered_allen), ]
sce_filtered_allen
## ---- collapse=TRUE-----------------------------------------------------------
plot_top_window_autocor(calculate_cvs(scData_hESC))
## ---- collapse=TRUE-----------------------------------------------------------
metrics_bigBins <- scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 1000) %>%
correlate_windows(n_random = 3) %>%
get_mean_median
metrics_smallBins <- scData_hESC %>%
calculate_cvs %>%
define_top_genes(window_size = 100) %>%
bin_scdata(window_size = 500) %>%
correlate_windows(n_random = 3) %>%
get_mean_median
plot_grid(
plot_metric(metrics_bigBins) +
labs(title = "1000 genes per bin"),
plot_metric(metrics_smallBins) +
labs(title = "500 genes per bin")
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.