Nothing
#' simulation to generate scRNA-seq data with varying level of
#' gene detection noise versus gene count noise
#'
#' @return GeneExpr,a count matrix with rows number of genes
#' and columns number of cells
#' @return celltype,a vector specify the corresponding
#' celltype after QC measures.
#'
#' @param zinb a ZINB-WaVE object representing ZINB-WaVE fit
#' to real data to get realistic simulation parameters
#' @param celltype a factor to specify the ground-truth cell types in the
#' original dataset that the parameter of zinb object is fit to.
#' Since we filter out some simulated cells due to low amount of genes detected
#' in that cell,
#' we subset the ground truth cell types correspondingly
#' @param disper numeric value, parameter to control the size factor
#' \eqn{r} in \eqn{NB(\mu, r)}.
#' r is varied in the set {0.5,1,5} in our simulation(as outlined in our paper)
#' @param var_count numeric value, parameter to control the noise level
#' added to a common embedding space to generate gene count matrix.
#' This parameter is formulated as \eqn{\sigma_\mu}
#' and and in the paper is selected from the set {0.1, 0.5, 1, 2, 3}
#' @param var_dropout numeric value, parameter to control the noise level added
#' to a common embedding space for to generate gene detection matrix.
#' This parameter is formulated as \eqn{\sigma_\pi}
#' and in the paper is selected from the set {0.1, 0.5, 1, 2, 3}
#' @param delta intercept to control the overall gene detection rate.
#' and in the paper is selected from the set {-2, -0.5, 1,2.5,4}
#'
#' @import zinbwave
#' @import MASS
#' @import SingleCellExperiment
#' @importFrom stats rbinom rnbinom rnorm
#'
#' @keywords export
#'
#' @export
#' @examples
#'
#' ## raw counts matrix with rows are genes and columns are cells
#' data("zinb_toy",package = "scBFA", envir = environment())
#' ## a vector specify the ground truth of cell types provided by conquer database
#' data("celltype_toy",package = "scBFA",envir = environment())
#'
#' scData = scNoiseSim(zinb = zinb_toy,
#' celltype = celltype_toy,
#' disper = 1,
#' var_dropout =1,
#' var_count = 1,
#' delta = 1)
#'
scNoiseSim = function(zinb,
celltype,
disper,
var_dropout = 1,
var_count = 1,
delta){
# number of cells
numCells = nrow(zinb@W)
# number of genes
numGenes = ncol(zinb@alpha_mu)
# number of numFactors
numFactors =ncol(zinb@W)
# simulate a N by K low dimensional embedding for mean of gene count,
# the mean of every row of the embedding space is the corresponding row of
# embedding in zinb-wave
score_count=t(apply(zinb@W,1,function(x){
mvrnorm(1,mu = x,Sigma = diag(rep(var_count,numFactors),numFactors))}
))
# compute a N by G mean expression level for gene count
mu = exp(zinb@X %*% zinb@beta_mu +
t(zinb@gamma_mu) %*% t(zinb@V) +
score_count %*% (zinb@alpha_mu) + zinb@O_mu)
# simulate a N by K low dimensional embedding for gene detection space,
# the mean of every row of the embedding space is the corresponding
# row of embedding in zinb-wave
score_dropout = t(apply(zinb@W,1,function(x){
mvrnorm(1,mu = x,Sigma = diag(rep(var_dropout,numFactors),numFactors))}))
# linear term to parameterize the probability matrix to determine whether
# a gene is zero or sampled from a NB distirbution
linear = zinb@X %*% zinb@beta_pi +t(zinb@gamma_pi) %*% t(zinb@V) +
score_dropout %*% (zinb@alpha_pi) - delta
# probability for a gene to sample zero
Pi_sample_zero = 1/(1 + exp(-linear))
# probability for a gene to sample from NB distribution
Pi_sample_count = 1- Pi_sample_zero
# observed count matrix O
pseudoCounts = matrix(0,nrow = numCells, ncol = numGenes)
for(ii in seq_len(numCells)){
for(jj in seq_len(numGenes)){
# whether to sample a zero or a negative binomial distribution
pi = rbinom(1, size = 1, prob =Pi_sample_zero[ii,jj])
# if pi = 1, the gene has zero count
# if pi = 0, the gene is sampled from NB distribution
if(pi == 0){
pseudoCounts[ii,jj] = rnbinom(n = 1, size = disper , mu = mu[ii,jj])
}
}
}
# check if there is NA generated due to numeric reason.
message(paste("the amount of NA: ",sum(is.na(pseudoCounts))))
message(paste0("total detection rate:",sum(pseudoCounts != 0)/length(mu)))
# calculate gene detection rate
gdr = colSums(pseudoCounts != 0)/numCells
# calculate cell detection rate
cdr = rowSums(pseudoCounts!=0)/numGenes
message("summary of gene detection rate")
message(summary(gdr))
message("summary of cell detection rate")
message(summary(cdr))
# quality control: filter out genes with gene detection rate less than 0.01
useGene = gdr> 0.01
# quality control fileter out cells with cell detection rate less than 0.01
useCell = cdr >0.01
pseudoCounts = pseudoCounts[useCell,useGene]
sce <- SingleCellExperiment(assay = list(counts = t(pseudoCounts)),colData = data.frame(celltype =celltype[useCell] ))
return(sce)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.