Nothing
#' Amino-Acids Dataset
#'
#' Quantitative structure property relationship (QSPR)
#'
#'
#' @name aminoacids
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item AA amino acid
#' \item PIE lipophilicity constant
#' of the AA side chain
#' \item PIF lipophilicity constant of the AA
#' side chain
#' \item DGR free energy of transfer of an AA side chain
#' from protein interior to water
#' \item SAC water-accessible
#' surface area of AA's calculated by MOLSV
#' \item MR molecular
#' refractivity
#' \item Lam polarity parameter
#' \item Vol
#' molecular volume of AA's calculated by MOLSV
#' \item DDGTS free
#' energy of unfolding of the tryptophane synthase a unit of bacteriophage T4
#' lysosome
#' }
#' @return Data frame (numeric type except the first column, which can be
#' transformed into row names) with 19 rows and the 9 columns contaning
#' information about amino acids. For details see the 'Format' section above.
#' @references Wold et al. (2001). PLS-regression: a basic tool of
#' chemometrics. Chemometrics and Intelligent Laboratory Systems. 58:109-130.
#' @source 'aminoacids' dataset.
#' @keywords datasets
NULL
#' NIR-Viscosity example data set to illustrate multivariate calibration using
#' PLS, spectral filtering and OPLS
#'
#' The data were collected at Akzo Nobel, Ornkoldsvik (Sweden). The raw
#' material for their cellulose derivative process is delivered to the factory
#' in form of cellulose sheets. Before entering the process the cellulose
#' sheets are controlled by a viscosity measurement, which functions as a
#' steering parameter for that particular batch. In this data set NIR spectra
#' for 180 cellulose sheets were collected after the sheets had been sent
#' through a grinding process. Hence the NIR spectra were measured on the
#' cellulose raw material in powder form. Data are divided in two parts, one
#' used for modeling and one part for testing.
#'
#'
#' @name cellulose
#' @docType data
#' @format A list with the following elements:
#' \itemize{
#' \item nirMN a matrix of 180 samples x 1201 wavelengths in the VIS-NIR region
#' \item viscoVn a vector (length = 180) of viscosity of cellulose powder
#' \item classVn a vector (length = 180) of class membership (1 or 2)
#' }
#' @return For details see the Format section above.
#' @references Multivariate calibration using spectral data. Simca tutorial.
#' Umetrics.
#' @keywords datasets
NULL
#' Octane of various blends of gasoline
#'
#' Twelve mixture component proportions of the blend are analysed
#'
#'
#' @name cornell
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item num mixture number
#' \item x1 proportion of
#' component 1
#' \item x2 proportion of component 2
#' \item x3 proportion of component 3
#' \item x4 proportion of component 4
#' \item x5 proportion of component 5
#' \item x6 proportion of component 6
#' \item x7 proportion of component 7 Note: the 7 variables are correlated since they sum up to 1
#' \item y octane (quantitative variable)
#' }
#' @return Data frame (numeric type only; the first column can be transformed
#' into row names) with 12 rows and 9 columns corresponding to the 'num'ber of
#' the mixture (column 1), the proportion of each of the 7 'x' components
#' within the mixture (columns 2-8), and the octane indice 'y' (column 9). For
#' details see the 'Format' section above.
#' @references Tenenhaus (1998). La regression PLS: theorie et pratique. Paris:
#' Editions Technip.
#' @source Tenenhaus (1998), Table 6, page 78.
#' @keywords datasets
NULL
#' Food consumption patterns accross European countries (FOODS)
#'
#' The relative consumption of 20 food items was compiled for 16 countries. The
#' values range between 0 and 100 percent and a high value corresponds to a
#' high consumption. The dataset contains 3 missing data.
#'
#'
#' @name foods
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item Country Name of the country
#' \item Gr_CoffeGround Coffee
#' \item Inst_Coffe Instant Coffee
#' \item Tea Tea \item Sweetner Sweetner
#' \item Biscuits Biscuits \item Pa_Soup Powder Soup
#' \item Ti_Soup Tin Soup \item In_Potat Instant Potatoes
#' \item Fro_Fish Frozen Fish
#' \item Fro_Veg Frozen Vegetables
#' \item Apples Apples
#' \item Oranges Oranges
#' \item Ti_Fruit Tin Fruit
#' \item Jam Jam
#' \item Garlic Garlic
#' \item Butter Butter
#' \item Margarine Margarine
#' \item Olive_Oil Olive Oil
#' \item Yoghurt Yoghurt
#' \item Crisp_Brea Crisp Bread
#' }
#' @return Data frame (numeric type except the first column, which can be
#' transformed into row names) with 16 rows and 21 columns, corresponding to
#' the 'Country' (column 1), followed by the consumption of each of the 20 food
#' items (columns 2-21). For details see the 'Format' section above.
#' @references Eriksson et al. (2006). Multi- and Megarvariate Data Analysis.
#' Umetrics Academy. pp.10, 33, 48.
#' @keywords datasets
NULL
#' Linnerud Dataset
#'
#' Three physiological and three exercise variables are measured on twenty
#' middle-aged men in a fitness club.
#'
#'
#' @name linnerud
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item num subject number
#' \item weight weight
#' \item waist waist
#' \item pulse pulse
#' \item pullUp pull-up
#' \item squat situp
#' \item jump jump
#' }
#' @return Data frame (numeric type only; the first column can be transformed
#' into row names) with 20 rows and 7 columns corresponding to the subject's
#' 'num'ber (column 1), the 3 physiological variables (columns 2-4), and the 3
#' exercise variables (columns 5-7). For details see the 'Format' section
#' above.
#' @references Tenenhaus (1998). La regression PLS: theorie et pratique. Paris:
#' Editions Technip.
#' @source 'mixOmics' 'linnerud' dataset.
#' @keywords datasets
NULL
#' A multi response optimization data set (LOWARP)
#'
#' This example concerns the development of a polymer similar to that used in
#' the plastic covering of mobile phones. The desired profile of the polymer
#' was low warp and high strength. Four constituents (glas, crtp, mica, and
#' amtp) were varied in the polymer formulation by means of a 17 run mixture
#' design. For each new polymer, i.e., each new experiment in the mixture
#' design, 14 responses relating to both warp and strength were measured on the
#' product. The objective of the data analysis was to uncover which combination
#' of factors (the four ingredients) gave polymers with low warp and high
#' strength. The data set contains 10 missing values (NA).
#'
#'
#' @name lowarp
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item num mixture number
#' \item glas glas constituent
#' \item crtp crtp constituent
#' \item mica mica constituent
#' \item amtp amtp constituent
#' \item wrp1 warp response 1
#' \item wrp2 warp response 2
#' \item wrp3 warp response 3
#' \item wrp4 warp response 4
#' \item wrp5 warp response 5
#' \item wrp6 warp response 6
#' \item wrp7 warp response 7
#' \item wrp8 warp response 8
#' \item st1 strength response 1
#' \item st2 strength response 2
#' \item st3 strength response 3
#' \item st4 strength response 4
#' \item st5 strength response 5
#' \item st6 strength response 6
#' }
#' @return Data frame (numeric type only; the first column can be transformed
#' into row names) with 17 rows and 19 columns corresponding to the subject's
#' 'num'ber (column 1), the 4 constituent variables (columns 2-5), the 8 warp
#' responses (columns 6-13), and the 6 strength responses (columns 14-19). For
#' details see the 'Format' section above.
#' @references Eriksson et al. (2006). Multi- and Megarvariate Data Analysis.
#' Umetrics Academy. pp.16, 77, 209.
#' @keywords datasets
NULL
#' 'mark' Dataset
#'
#' Examination marks obtained by French students in Mathematics, Physics,
#' French and English
#'
#'
#' @name mark
#' @docType data
#' @format A data frame with the following parameters:
#' \itemize{
#' \item nom names of the students
#' \item math marks in mathematics
#' \item phys marks in physics
#' \item fran marks in french
#' \item angl marks in english
#' }
#' @return Data frame (numeric type except the first column, which can be
#' transformed into row names) with 9 rows and 5 columns, corresponding to the
#' name of the students (column 1), followed by the marks obtained in Maths,
#' Physics, French and English (columns 2-5). For details see the 'Format'
#' section above.
#' @references Baccini (2010). Statistique Descriptive Multidimensionnelle
#' (pour les nuls).
#' @source 'mark' dataset.
#' @keywords datasets
NULL
#' Analysis of the human adult urinary metabolome variations with age, body
#' mass index and gender
#'
#' Urine samples from 183 human adults were analyzed by liquid chromatography
#' coupled to high-resolution mass spectrometry (LTQ Orbitrap) in the negative
#' ionization mode. A total of 109 metabolites were identified or annotated at
#' the MSI level 1 or 2. After retention time alignment with XCMS, peaks were
#' integrated with Quan Browser. After signal drift and batch effect correction
#' of intensities, each urine profile was normalized to the osmolality of the
#' sample. Finally, the data were log10 transformed.
#'
#' @name sacurine
#' @docType data
#' @format A list with the following elements:
#' \itemize{
#' \item dataMatrix a 183 samples x
#' 109 variables matrix of numeric type corresponding to the intensity profiles
#' (values have been log10-transformed)
#' \item sampleMetadata a 183 x 3 data frame, with the volunteers' age
#' ('age', numeric), body mass index ('bmi',
#' numeric), and gender ('gender', factor)
#' \item variableMetadata a 109 x 3 data frame, with the metabolites'
#' MSI identification level ('msiLevel':
#' either 1 or 2), HMDB ID when available ('hmdb', character), chemical class
#' according to the 'super class' taxonomy of HMDB ('chemicalClass', character)
#' }
#' @return List containing the 'dataMatrix' matrix (numeric) of data (samples
#' as rows, variables as columns), the 'sampleMetadata' data frame of sample
#' metadata, and the variableMetadata data frame of variable metadata. Row
#' names of 'dataMatrix' and 'sampleMetadata' are identical. Column names of
#' 'dataMatrix' are identical to row names of 'variableMetadata'. For details
#' see the 'Format' section above.
#' @references Thevenot E.A., Roux A., Xu Y., Ezan E. and Junot C. (2015).
#' Analysis of the human adult urinary metabolome variations with age, body
#' mass index and gender by implementing a comprehensive workflow for
#' univariate and OPLS statistical analyses. Journal of Proteome Research, DOI:
#' 10.1021/acs.jproteome.5b00354
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.