Nothing
## ----installme, eval=FALSE----------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("polyester")
## ----fcmat--------------------------------------------------------------------
fold_changes = matrix(c(4,4,rep(1,18),1,1,4,4,rep(1,16)), nrow=20)
head(fold_changes)
## ----builtinex, warning=FALSE, message=FALSE----------------------------------
library(polyester)
library(Biostrings)
# FASTA annotation
fasta_file = system.file('extdata', 'chr22.fa', package='polyester')
fasta = readDNAStringSet(fasta_file)
# subset the FASTA file to first 20 transcripts
small_fasta = fasta[1:20]
writeXStringSet(small_fasta, 'chr22_small.fa')
# ~20x coverage ----> reads per transcript = transcriptlength/readlength * 20
# here all transcripts will have ~equal FPKM
readspertx = round(20 * width(small_fasta) / 100)
# simulation call:
simulate_experiment('chr22_small.fa', reads_per_transcript=readspertx,
num_reps=c(10,10), fold_changes=fold_changes, outdir='simulated_reads')
## ----countmat-----------------------------------------------------------------
# set up transcript-by-timepoint matrix:
num_timepoints = 12
countmat = matrix(readspertx, nrow=length(small_fasta), ncol=num_timepoints)
# add spikes in expression at certain timepoints to certain transcripts:
up_early = c(1,2)
up_late = c(3,4)
countmat[up_early, 2] = 3*countmat[up_early, 2]
countmat[up_early, 3] = round(1.5*countmat[up_early, 3])
countmat[up_late, 10] = 6*countmat[up_late, 10]
countmat[up_late, 11] = round(1.2*countmat[up_late, 11])
# simulate reads:
simulate_experiment_countmat('chr22_small.fa', readmat=countmat,
outdir='timecourse_reads')
## ----installbg, eval=FALSE----------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("ballgown")
# library(ballgown)
# data(bg)
# bg = subset(bg, "chr=='22'")
#
# # load gtf file for annotation:
# gtfpath = system.file('extdata', 'bg.gtf.gz', package='polyester')
# gtf = subset(gffRead(gtfpath), seqname=='22')
#
# # load chromosome sequence corresponding to gtf file (just for this example -- requires download because of file size)
# system('wget https://www.dropbox.com/s/04i6msi9vu2snif/chr22seq.rda')
# load('chr22seq.rda')
# names(chr22seq) = '22'
#
# # simulate reads based on this experiment's FPKMs
# simulate_experiment_empirical(bg, grouplabels=pData(bg)$group, gtf=gtf,
# seqpath=chr22seq, mean_rps=5000, outdir='empirical_reads', seed=1247)
## ----info, results='markup'---------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.