BiocStyle::markdown()
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Package: r Biocpkg("peakPantheR")
Authors: Arnaud Wolfer
## Silently loading all packages library(BiocStyle) library(peakPantheR) library(faahKO) library(pander)
Package for Peak Picking and ANnoTation of High resolution Experiments in R,
implemented in R
and Shiny
peakPantheR
implements functions to detect, integrate and report pre-defined
features in MS files (e.g. compounds, fragments, adducts, ...).
It is designed for:
multiple
compounds in one
file at a timemultiple
compounds in multiple
files in parallel
, store
results in a single
objectpeakPantheR
can process LC/MS data files in NetCDF, mzML/mzXML and
mzData format as data import is achieved using Bioconductor's
r Biocpkg("mzR")
package.
To install peakPantheR
from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("peakPantheR")
Install the development version of peakPantheR
directly from GitHub with:
# Install devtools if(!require("devtools")) install.packages("devtools") devtools::install_github("phenomecentre/peakPantheR")
To get started peakPantheR
's graphical user interface
implements all the functions to detect and integrate multiple compounds in
multiple files in parallel and store results in a single object. It
can be employed to integrate a large number of expected features across a
dataset:
library(peakPantheR) peakPantheR_start_GUI(browser = TRUE) # To exit press ESC in the command line
knitr::include_graphics("../man/figures/example-UI.png")
The GUI is to be preferred to understand the methodology, select the best parameters on a subset of the samples before running the command line, or to visually explore results.
If a very high number of samples and features is to be processed,
peakpantheR
's command line functions are more efficient, as they can
be integrated in scripts and the reporting automated.
Both real time and parallel compound integration require a common set of information:
netCDF
/ mzML
MS file(s)RT
/ m/z
window) for each compound.For demonstration purpose we can annotate a set a set of raw MS spectra (in
NetCDF format) provided by the r Biocpkg("faahKO")
package. Briefly, this
subset of the data from [@Saghatelian04] invesigate the metabolic consequences
of knocking out the fatty acid amide hydrolase (FAAH) gene in mice. The dataset
consists of samples from the spinal cords of 6 knock-out and 6 wild-type mice.
Each file contains data in centroid mode acquired in positive ion mode form
200-600 m/z and 2500-4500 seconds.
Below we install the r Biocpkg("faahKO")
package and locate raw CDF files of
interest:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("faahKO")
library(faahKO) ## file paths input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), system.file('cdf/KO/ko16.CDF', package = "faahKO"), system.file('cdf/KO/ko18.CDF', package = "faahKO")) input_spectraPaths
Expected regions of interest (targeted features) are specified using the following information:
cpdID
(numeric)cpdName
(character)rtMin
(sec)rtMax
(sec)rt
(sec, optional / NA
)mzMin
(m/z)mzMax
(m/z)mz
(m/z, optional / NA
)Below we define 2 features of interest that are present in the
r Biocpkg("faahKO")
dataset and can be employed in subsequent vignettes:
# targetFeatTable input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE) input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)], as.numeric)
# use pandoc for improved readability input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE) input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)], as.numeric) rownames(input_targetFeatTable) <- NULL pander::pandoc.table(input_targetFeatTable, digits = 9)
While the command line functions accept Data.Frame and vectors as input, the
graphical user interface (GUI) will read the same information from a set of
.csv
files, or an already set-up peakPantheRAnnotation
object in .RData
format.
We can now generate GUI input files for the r Biocpkg("faahKO")
example
dataset presented previously:
A peakPantheRAnnotation
(previously annotated or not) can be passed as input
in a .RData
file. The peakPantheRAnnotation
object must be named
annotationObject:
library(faahKO) # Define the file paths (3 samples) input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), system.file('cdf/KO/ko16.CDF', package = "faahKO"), system.file('cdf/KO/ko18.CDF', package = "faahKO")) # Define the targeted features (2 features) input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE) input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric) # Define some random compound and spectra metadata # cpdMetadata input_cpdMetadata <- data.frame(matrix(data=c('a','b',1,2), nrow=2, ncol=2, dimnames=list(c(), c('testcol1','testcol2')), byrow=FALSE), stringsAsFactors=FALSE) # spectraMetadata input_spectraMetadata <- data.frame(matrix(data=c('c','d','e',3,4,5), nrow=3, ncol=2, dimnames=list(c(),c('testcol1','testcol2')), byrow=FALSE), stringsAsFactors=FALSE) # Initialise a simple peakPantheRAnnotation object # [3 files, 2 features, no uROI, no FIR] initAnnotation <- peakPantheRAnnotation(spectraPaths=input_spectraPaths, targetFeatTable=input_targetFeatTable, cpdMetadata=input_cpdMetadata, spectraMetadata=input_spectraMetadata) # Rename and save the annotation to disk annotationObject <- initAnnotation save(annotationObject, file = './example_annotation_ppR_UI.RData', compress=TRUE)
Another input option for the GUI input consists of a set of .csv
files.
Targeted features are defined in a .csv
with as rows each feature to target
(the first row must be the column name), and as columns the fit parameters to
use. At minimum the following parameters must be defined:
cpdID
, cpdName
, rtMin
, rt
, rtMax
, mzMin
, mz
, mzMax
If uROI
and FIR
are to be set, the following columns must be provided:
cpdID
, cpdName
, ROI_rt
, ROI_mz
, ROI_rtMin
, ROI_rtMax
, ROI_mzMin
,
ROI_mzMax
, uROI_rtMin
, uROI_rtMax
, uROI_mzMin
, uROI_mzMax
, uROI_rt
,
uROI_mz
, FIR_rtMin
, FIR_rtMax
, FIR_mzMin
, FIR_mzMax
# Define targeted features without uROI and FIR (2 features) input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE) input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric) # save to disk write.csv(input_targetFeatTable, file = './1-fitParams_example_UI.csv', row.names = FALSE)
# use pandoc for improved readability input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE) input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222) input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962) input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric) rownames(input_targetFeatTable) <- NULL pander::pandoc.table(input_targetFeatTable, digits = 9)
It is possible to select the files on disk directly through the GUI, or to
select a .csv
file containing each file path as well as spectra metadata.
Each row correspond to a different spectra (the first row must define the
column names) while columns correspond to the path on disk and metadata. At
minimum a column filepath
must be present, with subsequent columns defining
metadata properties.
# Define the spectra paths and metada input_spectraMeta <- data.frame(matrix(vector(), 3, 3, dimnames=list(c(),c("filepath","testcol1","testcol2"))), stringsAsFactors=FALSE) input_spectraMeta[1,] <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), "c", 3) input_spectraMeta[2,] <- c(system.file('cdf/KO/ko16.CDF', package = "faahKO"), "d", 4) input_spectraMeta[3,] <- c(system.file('cdf/KO/ko18.CDF', package = "faahKO"), "e", 5) # save to disk write.csv(input_spectraMeta, file = './2-spectraMetaWPath_example_UI.csv', row.names = FALSE)
# use pandoc for improved readability input_spectraMeta <- data.frame(matrix(vector(), 3, 3, dimnames=list(c(),c("filepath","testcol1","testcol2"))), stringsAsFactors=FALSE) input_spectraMeta[1,] <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"), "c", 3) input_spectraMeta[2,] <- c(system.file('cdf/KO/ko16.CDF', package = "faahKO"), "d", 4) input_spectraMeta[3,] <- c(system.file('cdf/KO/ko18.CDF', package = "faahKO"), "e", 5) rownames(input_spectraMeta) <- NULL pander::pandoc.table(input_spectraMeta, digits = 0)
It is possible to define some feature metadata, with targeted features as rows (same order as the fitting parameters, first row defining the column names), and as columns the metadata.
# Define the feature metada input_featMeta <- data.frame(matrix(vector(), 2, 2, dimnames=list(c(),c("testcol1","testcol2"))), stringsAsFactors=FALSE) input_featMeta[1,] <- c("a", 1) input_featMeta[2,] <- c("b", 2) # save to disk write.csv(input_featMeta, file = './3-featMeta_example_UI.csv', row.names = FALSE)
# use pandoc for improved readability input_featMeta <- data.frame(matrix(vector(), 2, 2, dimnames=list(c(),c("testcol1","testcol2"))), stringsAsFactors=FALSE) input_featMeta[1,] <- c("a", 1) input_featMeta[2,] <- c("b", 2) rownames(input_featMeta) <- NULL pander::pandoc.table(input_featMeta, digits = 0)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.