Nothing
#' Train a supervised PCA model
#'
#' @description Computes feature scores for \eqn{p_{path}} features of a pathway
#' via a linear model fit.
#'
#' @param data A list of test data:
#' \itemize{
#' \item{\code{x} : }{A "tall" pathway data frame (\eqn{p_{path} \times N}).}
#' \item{\code{y} : }{A response vector corresponding to \code{type}.}
#' \item{\code{censoring.status} : }{If \code{type = "survival"}, the
#' censoring indicator (\eqn{1 - } the observed event indicator. Otherwise,
#' \code{NULL}.}
#' \item{\code{featurenames} : }{A character vector of the measured -Omes in
#' \code{x}.}
#' }
#' @param type What model relates \code{y} and \code{x}? Options are
#' \code{"survival"}, \code{"regression"}, or \code{"categorical"}.
#' @param s0.perc A stabilization parameter on the interval \eqn{[0,1]}. This is
#' an internal argument to each of the called functions. The default value is
#' \code{NULL} to ensure an appropriate value is determined internally.
#'
#' @return A list containing:
#' \itemize{
#' \item{\code{feature.scores} : }{The scaled \eqn{p}-dimensional score
#' vector: each value has been divided by its respective standard deviation
#' plus epsilon (governed by \code{s0.perc}). \code{NA} values returned by
#' the logistic model are replaced with 0.}
#' \item{\code{type} : }{The argument for \code{type}.}
#' \item{\code{s0.perc} : }{The user-supplied value of \code{s0.perc}, or the
#' internally-calculated default value from the chosen model.}
#' \item{\code{call} : }{The output of \code{\link{match.call}} for the user-
#' supplied function arguments.}
#' }
#'
#' @details This function is a \code{\link{switch}} call to
#' \code{\link{coxTrain_fun}} (for \code{type = "survival"}),
#' \code{\link{olsTrain_fun}} (for \code{type = "regression"}), or
#' \code{\link{glmTrain_fun}} (for \code{type = "categorical"}).
#'
#' @seealso \code{\link{superpc.st}}; \code{\link{SuperPCA_pVals}}
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Use SuperPCA_pVals() instead
#'
#' \dontrun{
#' data("colon_pathwayCollection")
#' data("colonSurv_df")
#'
#' colon_OmicsSurv <- CreateOmics(
#' assayData_df = colonSurv_df[,-(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' asthmaGenes_char <-
#' getTrimPathwayCollection(colon_OmicsSurv)[["KEGG_ASTHMA"]]$IDs
#'
#' data_ls <- list(
#' x = t(getAssay(colon_OmicsSurv))[asthmaGenes_char, ],
#' y = getEventTime(colon_OmicsSurv),
#' censoring.status = getEvent(colon_OmicsSurv),
#' featurenames = asthmaGenes_char
#' )
#'
#' superpc.train(
#' data = data_ls,
#' type = "surv"
#' )
#' }
#'
superpc.train <- function(data,
type = c("survival", "regression", "categorical"),
s0.perc = NULL){
# browser()
this.call <- match.call()
type <- match.arg(type)
### Error Checks ###
censor_logi <- is.null(data$censoring.status)
if(censor_logi & type == "survival"){
stop("Error: survival specified but censoring.status is null")
}
if(!censor_logi & type == "regression"){
stop("Error: regression specified but censoring.status is non-null")
}
### Model Switch ###
switch(type,
survival = {
junk <- coxTrain_fun(
data$x, data$y,
data$censoring.status,
s0.perc = s0.perc
)
},
regression = {
junk <- olsTrain_fun(
as.matrix(data$x), data$y,
s0.perc = s0.perc
)
},
categorical = {
resp <- data$y
if(!(is.integer(resp) | is.factor(resp))){
stop("Response must be an integer or factor for classification.")
}
if(is.ordered(resp)){
stop("Ordered Logistic Regression not currently implemented.")
type <- "ordered"
# MASS::polr implementation
} else if(length(unique(resp)) > 2) {
stop("Multinomial Regression not currently implemented.")
type <- "n_ary"
# nnet::multinom implementation
} else if(length(unique(resp)) == 2) {
type <- "binary"
junk <- glmTrain_fun(data$x, resp, family = binomial)
junk$tt[is.na(junk$tt)] <- 0
} else {
stop("Response requires two or more distinct values for classification.")
}
})
out_ls <- list(feature.scores = junk$tt,
type = type,
s0.perc = s0.perc,
call = this.call)
class(out_ls) <- "superpc"
out_ls
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.