Nothing
#' Online fallback procedure for FWER control
#'
#' Implements the online fallback procedure of Tian and Ramdas (2019b), which
#' guarantees strong FWER control under arbitrary dependence of the p-values.
#'
#' The function takes as its input either a vector of p-values or a dataframe
#' with three columns: an identifier (`id'), date (`date') and p-value (`pval').
#' The case where p-values arrive in batches corresponds to multiple instances
#' of the same date. If no column of dates is provided, then the p-values are
#' treated as being ordered sequentially with no batches. Given an overall
#' significance level \eqn{\alpha}, we choose a sequence of non-negative
#' non-increasing numbers \eqn{\gamma_i} that sum to 1.
#'
#' The online fallback procedure provides a uniformly more powerful method than
#' Alpha-spending, by saving the significance level of a previous rejection.
#' More specifically, the procedure tests hypothesis \eqn{H_i} at level
#' \deqn{\alpha_i = \alpha \gamma_i + R_{i-1} \alpha_{i-1}} where \eqn{R_i =
#' 1\{p_i \leq \alpha_i\}} denotes a rejected hypothesis.
#'
#' Further details of the online fallback procedure can be found in Tian and
#' Ramdas (2019b).
#'
#'
#' @param d Either a vector of p-values, or a dataframe with three columns: an
#' identifier (`id'), date (`date') and p-value (`pval'). If no column of
#' dates is provided, then the p-values are treated as being ordered
#' sequentially with no batches.
#'
#' @param alpha Overall significance level of the FDR procedure, the default is
#' 0.05.
#'
#' @param gammai Optional vector of \eqn{\gamma_i}. A default is provided with
#' \eqn{\gamma_j} proportional to \eqn{1/j^(1.6)}.
#'
#' @param random Logical. If \code{TRUE} (the default), then the order of the
#' p-values in each batch (i.e. those that have exactly the same date) is
#' randomised.
#'
#' @param date.format Optional string giving the format that is used for dates.
#'
#'
#' @return \item{d.out}{ A dataframe with the original data \code{d} (which will
#' be reordered if there are batches and \code{random = TRUE}), the
#' LORD-adjusted significance thresholds \eqn{\alpha_i} and the indicator
#' function of discoveries \code{R}. Hypothesis \eqn{i} is rejected if the
#' \eqn{i}-th p-value is less than or equal to \eqn{\alpha_i}, in which case
#' \code{R[i] = 1} (otherwise \code{R[i] = 0}).}
#'
#'
#' @references Tian, J. and Ramdas, A. (2019b). Online control of the familywise error rate.
#' \emph{arXiv preprint}, \url{https://arxiv.org/abs/1910.04900}.
#'
#'
#' @examples
#' sample.df <- data.frame(
#' id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
#' 'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
#' 'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
#' date = as.Date(c(rep('2014-12-01',3),
#' rep('2015-09-21',5),
#' rep('2016-05-19',2),
#' '2016-11-12',
#' rep('2017-03-27',4))),
#' pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
#' 3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
#' 0.69274, 0.30443, 0.00136, 0.72342, 0.54757))
#'
#' online_fallback(sample.df, random=FALSE)
#'
#' set.seed(1); online_fallback(sample.df)
#'
#' set.seed(1); online_fallback(sample.df, alpha=0.1)
#'
#' @export
online_fallback <- function(d, alpha = 0.05, gammai, random = TRUE, date.format = "%Y-%m-%d") {
if (is.data.frame(d)) {
d <- checkdf(d, random, date.format)
pval <- d$pval
} else if (is.vector(d)) {
pval <- d
} else {
stop("d must either be a dataframe or a vector of p-values.")
}
checkPval(pval)
N <- length(pval)
if (alpha <= 0 || alpha > 1) {
stop("alpha must be between 0 and 1.")
}
if (missing(gammai)) {
gammai <- 0.07720838 * log(pmax(seq_len(N), 2))/((seq_len(N)) * exp(sqrt(log(seq_len(N)))))
} else if (any(gammai < 0)) {
stop("All elements of gammai must be non-negative.")
} else if (sum(gammai) > 1) {
stop("The sum of the elements of gammai must not be greater than 1.")
}
### Start algorithm
alphai <- R <- rep(0, N)
alphai[1] <- alpha * gammai[1]
R[1] <- (pval[1] <= alphai[1])
if (N == 1) {
d.out <- data.frame(d, alphai, R)
return(d.out)
}
for (i in (seq_len(N - 1) + 1)) {
alphai[i] <- alpha * gammai[i] + R[i - 1] * alphai[i - 1]
R[i] <- (pval[i] <= alphai[i])
}
d.out <- data.frame(d, alphai, R)
return(d.out)
}
TRUE
TRUE
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.