Nothing
#' Nucleosome positioning package for R
#'
#' Nucleosome positioning from Tiling Arrays and High-Troughput Sequencing
#' Experiments
#'
#' \tabular{ll}{
#' Package: \tab nucleR \cr
#' Type: \tab Package \cr
#' License: \tab LGPL (>= 3) \cr
#' LazyLoad: \tab yes \cr
#' }
#'
#' This package provides a convenient pipeline to process and analize
#' nucleosome positioning experiments from High-Troughtput Sequencing or Tiling
#' Arrays.
#'
#' Despite it's use is intended to nucleosome experiments, it can be also
#' useful for general ChIP experiments, such as ChIP-on-ChIP or ChIP-Seq.
#'
#' See following example for a brief introduction to the available functions
#'
#' @name nucleR-package
#' @aliases nucleR-package nucleR
#' @docType package
#' @author Oscar Flores Ricard Illa
#'
#' Maintainer: Ricard Illa \email{ricard.illa@@irbbarcelona.org}
#' @keywords package
#' @import methods
#'
#' @examples
#' library(ggplot2)
#' # Load example dataset:
#' # some NGS paired-end reads, mapped with Bowtie and processed with R
#' # it is a GRanges object with the start/end coordinates for each read.
#' reads <- get(data(nucleosome_htseq))
#'
#' # Process the paired end reads, but discard those with length > 200
#' preads_orig <- processReads(reads, type="paired", fragmentLen=200)
#'
#' # Process the reads, but now trim each read to 40bp around the dyad
#' preads_trim <- processReads(reads, type="paired", fragmentLen=200, trim=40)
#'
#' # Calculate the coverage, directly in reads per million (r.p.m.)
#' cover_orig <- coverage.rpm(preads_orig)
#' cover_trim <- coverage.rpm(preads_trim)
#'
#' # Compare both coverages, the dyad is much more clear in trimmed version
#' t1 <- as.vector(cover_orig[[1]])[1:2000]
#' t2 <- as.vector(cover_trim[[1]])[1:2000]
#' t1 <- (t1-min(t1)) / max(t1-min(t1)) # Normalization
#' t2 <- (t2-min(t2)) / max(t2-min(t2)) # Normalization
#'
#' plot_data <- rbind(
#' data.frame(
#' x=seq_along(t1),
#' y=t1,
#' coverage="original"
#' ),
#' data.frame(
#' x=seq_along(t2),
#' y=t2,
#' coverage="trimmed"
#' )
#' )
#' qplot(x=x, y=y, color=coverage, data=plot_data, geom="line",
#' xlab="position", ylab="coverage")
#'
#' # Let's try to call nucleosomes from the trimmed version
#' # First of all, let's remove some noise with FFT
#' # Power spectrum will be plotted, look how with a 2%
#' # of the components we capture almost all the signal
#' cover_clean <- filterFFT(cover_trim, pcKeepComp=0.02, showPowerSpec=TRUE)
#'
#' # How clean is it now?
#' plot_data <- rbind(
#' data.frame(
#' x=1:4000,
#' y=as.vector(cover_trim[[1]])[1:4000],
#' coverage="noisy"
#' ),
#' data.frame(
#' x=1:4000,
#' y=as.vector(cover_clean[[1]])[1:4000],
#' coverage="filtered"
#' )
#' )
#' qplot(x=x, y=y, color=coverage, data=plot_data, geom="line",
#' xlab="position", ylab="coverage")
#'
#' # And how similar? Let's see the correlation
#' cor(cover_clean[[1]], as.vector(cover_trim[[1]]))
#'
#' # Now it's time to call for peaks, first just as points
#' # See that the score is only a measure of the height of the peak
#' peaks <- peakDetection(cover_clean, threshold="25%", score=TRUE)
#' plotPeaks(peaks[[1]], cover_clean[[1]], threshold="25%")
#'
#' # Do the same as previously, but now we will create the nucleosome calls:
#' peaks <- peakDetection(cover_clean, width=147, threshold="25%", score=TRUE)
#' plotPeaks(peaks, cover_clean[[1]], threshold="25%")
#'
#' #This is all. From here, you can filter, merge or work with the nucleosome
#' #calls using standard IRanges functions and R/Bioconductor manipulation
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.