Nothing
#' @rdname data
#' @name data
#' @aliases data sce
#'
#' @title Example datasets
#'
#' @description
#' A \code{\link[SingleCellExperiment]{SingleCellExperiment}} containing
#' 10x droplet-based scRNA-seq PBCM data from 8 Lupus patients befor and after
#' 6h-treatment with INF-beta (16 samples in total).
#'
#' The original data has been filtered to
#' \itemize{
#' \item{remove unassigned cells & cell multiplets}
#' \item{retain only 4 out of 8 samples per experimental group}
#' \item{retain only 5 out of 8 subpopulations (clusters)}
#' \item{retain genes with a count > 1 in > 50 cells}
#' \item{retain cells with > 200 detected genes}
#' \item{retain at most 100 cells per cluster-sample instance}
#' }
#'
#' Assay \code{logcounts} corresponds to log-normalized values
#' obtained from \code{\link[scater]{logNormCounts}} with default parameters.
#'
#' The original measurement data, as well as gene and cell metadata
#' is available through the NCBI GEO accession number GSE96583;
#' code to reproduce this example dataset from the original data
#' is provided in the examples section.
#'
#' @return a \code{\link[SingleCellExperiment]{SingleCellExperiment}}.
#'
#' @examples
#' \dontrun{
#' # set random seed for cell sampling
#' set.seed(2929)
#'
#' # load data
#' library(ExperimentHub)
#' eh <- ExperimentHub()
#' sce <- eh[["EH2259"]]
#'
#' # drop unassigned cells & multiplets
#' sce <- sce[, !is.na(sce$cell)]
#' sce <- sce[, sce$multiplets == "singlet"]
#'
#' # keep 4 samples per group
#' sce$id <- paste0(sce$stim, sce$ind)
#' inds <- sample(sce$ind, 4)
#' ids <- paste0(levels(sce$stim), rep(inds, each = 2))
#' sce <- sce[, sce$id %in% ids]
#'
#' # keep 5 clusters
#' kids <- c("B cells", "CD4 T cells", "CD8 T cells",
#' "CD14+ Monocytes", "FCGR3A+ Monocytes")
#' sce <- sce[, sce$cell %in% kids]
#' sce$cell <- droplevels(sce$cell)
#'
#' # basic filtering on genes & cells
#' gs <- rowSums(counts(sce) > 1) > 50
#' cs <- colSums(counts(sce) > 0) > 200
#' sce <- sce[gs, cs]
#'
#' # sample max. 100 cells per cluster-sample
#' cs_by_ks <- split(colnames(sce), list(sce$cell, sce$id))
#' cs <- sapply(cs_by_ks, function(u)
#' sample(u, min(length(u), 100)))
#' sce <- sce[, unlist(cs)]
#'
#' # compute logcounts
#' library(scater)
#' sce <- computeLibraryFactors(sce)
#' sce <- logNormCounts(sce)
#'
#' # re-format for 'muscat'
#' sce <- prepSCE(sce,
#' cluster_id = "cell",
#' sample_id = "id",
#' group_id = "stim",
#' drop = TRUE)
#' }
#'
#' @references
#' Kang et al. (2018). Multiplexed droplet single-cell RNA-sequencing
#' using natural genetic variation. \emph{Nature Biotechnology},
#' \bold{36}(1): 89-94. DOI: 10.1038/nbt.4042.
#'
#' @author Helena L Crowell
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.