Methrix Summary

knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE)

library(ggplot2)
if (!requireNamespace("plotly", quietly = TRUE))
    install.packages("plotly")
library(plotly)
library(data.table)

Reference CpGs covered {.tabset}

Raw

n_covered = data.table::fread(input = params$n_covered_tsv)
n_covered[, fraction := n_covered/total_CpGs]

contig_lens = data.table::fread(input = params$chr_lens)

chr_order = contig_lens$contig[contig_lens$contig %in% unique(n_covered[,chr])]
n_covered[, chr := factor(as.character(chr), levels = chr_order)]

p = ggplot(data = n_covered, aes(x = chr, y = n_covered, label = Sample_Name))+geom_boxplot()+geom_jitter(size = 0.6)+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_text(angle = 45, hjust = 1))
plotly::ggplotly(p = p)

Fraction

p = ggplot(data = n_covered, aes(x = chr, y = fraction, label = Sample_Name))+geom_boxplot()+geom_jitter(size = 0.6)+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_text(angle = 45, hjust = 1))
plotly::ggplotly(p = p)

Number of reference CpGs covered by each sample in each chromosome

Reference CpGs covered by all {.tabset}

Raw

#n_covered_all = data.table::fread(input = "n_covered_by_all_samples.tsv")
n_covered_all = data.table::fread(input = params$n_covered_by_all_samples_tsv)
n_covered_all[,chr := factor(as.character(chr), levels = rev(chr_order))]
p = ggplot(data = n_covered_all, aes(x = chr, y = n_CpG, label = n_CpG))+geom_bar(stat = 'identity')+coord_flip()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+theme_minimal()
plotly::ggplotly(p = p)

Fraction

p = ggplot(data = n_covered_all, aes(x = chr, y = fract_CpG, label = fract_CpG))+geom_bar(stat = 'identity')+coord_flip()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+ylim(0, 1)+theme_minimal()
plotly::ggplotly(p = p)

Number of reference CpGs covered by all samples

Chromosome-wise Methylation {.tabset}

Mean

#m_stat = data.table::fread(input = "m_per_chr.tsv")
m_stat = data.table::fread(input = params$mc_per_chr_stat)
m_stat[,Chromosome := factor(as.character(Chromosome), levels = chr_order)]

p = ggplot(data = m_stat, aes(x = mean_meth, y = Sample_Name, color = Chromosome, label = Sample_Name))+geom_point()+xlim(0, 1)+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())

plotly::ggplotly(p = p)

Median

p = ggplot(data = m_stat, aes(x = median_meth, y = Sample_Name, color = Chromosome, label = Sample_Name))+geom_point()+xlim(0, 1)+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())

plotly::ggplotly(p = p)

Chromosome-wise depth of coverage {.tabset}

Mean

p = ggplot(data = m_stat, aes(x = mean_cov, y = Sample_Name, color = Chromosome, label = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())

plotly::ggplotly(p = p)

Median

p = ggplot(data = m_stat, aes(x = median_cov, y = Sample_Name, color = Chromosome, label = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())

plotly::ggplotly(p = p)

Genome-wide Methylation {.tabset}

Mean

#global_meth = data.table::fread(input = "global_meth_per_samp.tsv")
global_meth = data.table::fread(input = params$mc_per_sample_stat)
p = ggplot(data = global_meth, aes(x = mean_meth, y = Sample_Name, color = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+xlim(0, 1)+ theme(legend.position = "none")

plotly::ggplotly(p = p)

Median

p =  ggplot(data = global_meth, aes(x = median_meth, y = Sample_Name, color = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+xlim(0, 1)+ theme(legend.position = "none")

plotly::ggplotly(p = p)

Genome-wide depth of coverage {.tabset}

Mean

p = ggplot(data = global_meth, aes(x = mean_cov, y = Sample_Name, color = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+ theme(legend.position = "none")

plotly::ggplotly(p = p)

Median

p =  ggplot(data = global_meth, aes(x = median_cov, y = Sample_Name, color = Sample_Name))+geom_point()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())+ theme(legend.position = "none")

plotly::ggplotly(p = p)

Beta value distribution

if (!is.null(params$prefix)){
dens_files = list.files(pattern = "*_density\\.tsv\\.gz$", path = normalizePath(paste0(dirname(path = params$mc_per_sample_stat), "/", prefix, "/")), full.names = TRUE)} else {
  dens_files = list.files(pattern = "*_density\\.tsv\\.gz$", path = normalizePath(dirname(path = params$mc_per_sample_stat)), full.names = TRUE)
}

dens_files = normalizePath(path = dens_files)

if(length(dens_files) > 0){

  if(length(dens_files) <= 12){
    cols = c("#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", 
            "#B3DE69", "#FCCDE5", "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
  }else{
    cols = sample(x = colors(), size = length(dens_files), replace = FALSE)
  }

  dens_dat = lapply(dens_files, data.table::fread)
  names(dens_dat) = gsub(pattern = "_density.tsv.gz", replacement = "", x = basename(dens_files))
  dens_dat = data.table::rbindlist(l = dens_dat, idcol = "Sample_Name", use.names = TRUE, fill = TRUE)
  p = ggplot(dens_dat, aes(x = x, y = y, color = Sample_Name))+geom_line()+theme_minimal()+theme(axis.title.x = element_blank(), axis.title.y = element_blank())
  plotly::ggplotly(p = p)
}


Try the methrix package in your browser

Any scripts or data that you put into this service are public.

methrix documentation built on Feb. 13, 2021, 2 a.m.