Methrix tutorial

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
options(tinytex.verbose = TRUE)

Introduction

Methrix provides set of function which allows easy importing of various flavors of bedgraphs generated by methylation callers, and many downstream analysis to be performed on large matrices.

This vignette describes basic usage of the package intended to process several large bedgraph files in R. In addition, a detailed exemplary complete data analysis with steps from reading in to annotation and differential methylation calling can be found in our WGBS best practices workflow

Overview and usage functions of the package

Installation

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

#Installing stable version from BioConductor
BiocManager::install("methrix")

#Installing developmental version from GitHub
BiocManager::install("CompEpigen/methrix")

NOTE

Installation from BioConductor requires the BioC and R versions to be the newest. This arises from the restrictions imposed by BioConductor community which might cause package incompatibilities with the earlier versions of R (for e.g; R < 4.0). In that case installing from GitHub might be easier since it is much more merciful with regards to versions.

Reading bedgraph files

read_bedgraphs function is a versatile bedgraph reader intended to import bedgraph files generated virtually by any sort of methylation calling program. It requires user to provide indices for chromosome names, start position and other required fields. There are also presets available to import bedgraphs from most common programs such as Bismark, MethylDackel, and MethylcTools.

#Load library
library(methrix)
#Genome of your preference to work with
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

library(BiocManager)

if(!requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")
}
library(BSgenome.Hsapiens.UCSC.hg19) 
#Example bedgraph files
bdg_files <- list.files(
  path = system.file('extdata', package = 'methrix'),
  pattern = "*bedGraph\\.gz$",
  full.names = TRUE
)

print(basename(bdg_files))

#Generate some sample annotation table
sample_anno <- data.frame(
  row.names = gsub(
    pattern = "\\.bedGraph\\.gz$",
    replacement = "",
    x = basename(bdg_files)
  ),
  Condition = c("cancer", 'cancer', "normal", "normal"),
  Pair = c("pair1", "pair2", "pair1", "pair2"),
  stringsAsFactors = FALSE
)

print(sample_anno)

We can import bedgraph files with the function read_bedgraphs which reads in the bedgraphs, adds CpGs missing from the reference set, and creates a methylation/coverage matrices. Once the process is complete - it returns an object of class methrix which in turn inherits SummarizedExperiment class. methrix object contains 'methylation' and 'coverage' matrices (either in-memory or as on-disk HDF5 arrays) along with pheno-data and other basic info. This object can be passed to all downstream functions for various analysis.

#First extract genome wide CpGs from the desired reference genome
hg19_cpgs <- suppressWarnings(methrix::extract_CPGs(ref_genome = "BSgenome.Hsapiens.UCSC.hg19"))
#Read the files 
meth <- methrix::read_bedgraphs(
  files = bdg_files,
  ref_cpgs = hg19_cpgs,
  chr_idx = 1,
  start_idx = 2,
  M_idx = 3,
  U_idx = 4,
  stranded = FALSE,
  zero_based = FALSE, 
  collapse_strands = FALSE, 
  coldata = sample_anno
)

Note: Use the argument pipeline if your bedgraphs are generated with "Bismark", "MethylDeckal", or "MethylcTools". This will automatically figure out the file formats for you, and you dont have to use the arguments chr_idx start_idx and so..

#Typing meth shows basic summary.
meth

HTML QC report

Get basic summary statistics of the methrix object with methrix_report function which produces an interactive html report

methrix::methrix_report(meth = meth, output_dir = tempdir())

Click here for an example report.

Filtering

Remove uncovered loci

Usual task in analysis involves removing uncovered CpGs. i.e, those loci which are not covered across all sample (in other words covered only in subset of samples resulting NA for rest of the samples ).

meth = methrix::remove_uncovered(m = meth)
meth

Remove SNPs

One can also remove CpG sites overlaping with common SNPs based on minor allele frequencies.

if(!require(MafDb.1Kgenomes.phase3.hs37d5)) {
BiocManager::install("MafDb.1Kgenomes.phase3.hs37d5")} 
if(!require(GenomicScores)) {
BiocManager::install("GenomicScores")} 
library(MafDb.1Kgenomes.phase3.hs37d5)
library(GenomicScores)

meth_snps_filtered <- methrix::remove_snps(m = meth)

Basic operations

Extract methylation/coverage matrices

#Example data bundled, same as the previously generated meth 
data("methrix_data")

#Coverage matrix
coverage_mat <- methrix::get_matrix(m = methrix_data, type = "C")
head(coverage_mat)
#Methylation matrix
meth_mat <- methrix::get_matrix(m = methrix_data, type = "M")
head(meth_mat)
#If you prefer you can attach loci info to the matrix and output in GRanges format
meth_mat_with_loci <- methrix::get_matrix(m = methrix_data, type = "M", add_loci = TRUE, in_granges = TRUE)
meth_mat_with_loci

Coverage filter

Furthermore if you prefer you can filter sites based on coverage conditions.

#e.g; Retain all loci which are covered at-least in two sample by 3 or more reads
methrix::coverage_filter(m = methrix_data, cov_thr = 3, min_samples = 2)

Subset operations

Subset operations in methrix make use of data.tables fast binary search which is several orders faster than bsseq or other similar packages.

Subset by chromosome

#Retain sites only from chromosme chr21
methrix::subset_methrix(m = methrix_data, contigs = "chr21")

Subset by genomic regions

Regions can be data.table or GRanges format.

#e.g; Retain sites only in TP53 loci 
target_loci <- GenomicRanges::GRanges("chr21:27867971-27868103")

print(target_loci)

methrix::subset_methrix(m = methrix_data, regions = target_loci)

Subset by samples

methrix::subset_methrix(m = methrix_data, samples = "C1")

#Or you could use [] operator to subset by index
methrix_data[,1]

Summary statsitcis

Basic summaries

meth_stats <- get_stats(m = methrix_data)
print(meth_stats)
#Draw mean coverage per sample
plot_stats(plot_dat = meth_stats, what = "C", stat = "mean")
#Draw mean methylation per sample
plot_stats(plot_dat = meth_stats, what = "M", stat = "mean")

PCA

mpca <- methrix_pca(m = methrix_data, do_plot = FALSE)

#Plot PCA results
plot_pca(pca_res = mpca, show_labels = TRUE)

#Color code by an annotation
plot_pca(pca_res = mpca, m = methrix_data, col_anno = "Condition")

Plotting

Methylation

#Violin plots
methrix::plot_violin(m = methrix_data)

Coverage

methrix::plot_coverage(m = methrix_data, type = "dens")

Converting methrix to BSseq

If you prefer to work with bsseq object, you can generate bsseq object from methrix with the methrix2bsseq.

if(!require(bsseq)) {
BiocManager::install("bsseq")}
library(bsseq)
bs_seq <- methrix::methrix2bsseq(m = methrix_data)

bs_seq

SessionInfo

sessionInfo()


Try the methrix package in your browser

Any scripts or data that you put into this service are public.

methrix documentation built on Feb. 13, 2021, 2 a.m.