Nothing
#' Basic correlation plot function for normalized or unnormalized counts.
#'
#' This function plots a heatmap of the "n" features with greatest variance
#' across rows.
#'
#'
#' @param obj A MRexperiment object with count data.
#' @param n The number of features to plot. This chooses the "n" features with greatest variance.
#' @param norm Whether or not to normalize the counts - if MRexperiment object.
#' @param log Whether or not to log2 transform the counts - if MRexperiment object.
#' @param fun Function to calculate pair-wise relationships. Default is pearson
#' correlation
#' @param ... Additional plot arguments.
#' @return plotted correlation matrix
#' @seealso \code{\link{cumNormMat}}
#' @examples
#'
#' data(mouseData)
#' plotCorr(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none",dendrogram="none",
#' col = colorRampPalette(brewer.pal(9, "RdBu"))(50))
#'
plotCorr <- function(obj,n,norm=TRUE,log=TRUE,fun=cor,...) {
mat = returnAppropriateObj(obj,norm,log)
otusToKeep <- which(rowSums(mat) > 0)
otuVars = rowSds(mat[otusToKeep, ])
otuIndices = otusToKeep[order(otuVars, decreasing = TRUE)[1:n]]
mat2 = mat[otuIndices, ]
cc = as.matrix(fun(t(mat2)))
hc = hclust(dist(mat2))
otuOrder = hc$order
cc = cc[otuOrder, otuOrder]
heatmap.2(t(cc),...)
invisible(t(cc))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.