Nothing
## Function to normalize the microarray data
##
## Parameters: obj -> object of type maigesRaw to be normalized
## ... -> additional parameters for function normalizeWithinArrays
##
## Gustavo H. Esteves
## 15/05/07
##
##
normLoc <- function(obj=NULL, ...) {
## converting the obj to an object of class limma
if(class(obj) == "maigesRaw")
toNorm <- as(obj, "RGList")
else
stop("The 'obj' object isn't of class 'maigesRaw'.")
##
## Defining a new object for normalized data
##
norm <- new("maiges")
norm@BadSpots <- obj@BadSpots
norm@UseSpots <- obj@UseSpots
norm@GeneGrps <- obj@GeneGrps
norm@Paths <- obj@Paths
norm@Layout <- obj@Layout
norm@Glabels <- obj@Glabels
norm@Slabels <- obj@Slabels
norm@Date <- date()
## Picking R and packages version information
tmp <- sessionInfo()
vInfo <- list()
vInfo$R.version <- tmp$R.version$version.string
vInfo$BasePacks <- tmp$basePkgs
tmp1 <- NULL
for (i in 1:length(tmp$otherPkgs))
tmp1 <- c(tmp1, paste(tmp$otherPkgs[[i]]$Package, "version",
tmp$otherPkgs[[i]]$Version))
vInfo$AddPacks <- tmp1
norm@V.info <- vInfo
##
## Doing the normalization step
##
## Merging UseSpots and BadSpots
for(i in 1:dim(obj@UseSpots)[2])
obj@UseSpots[, i] <- obj@UseSpots[, i] & !obj@BadSpots
## Geting samples where Ref is labelled with ch2 to do the (-1) M multiplier
idxMult <- tolower(getLabels(obj, "Ref")) == "red"
## Catching the method of normalization
add <- list(...)
if(is.null(add$method))
type <- "printtiploess"
else
type <- add$method
## Normalization by the limma method
##
## Composite normalization (control spots) from limma. Here the
## parameter 'controlspots' must be specified to
## normalizeWithinArray function
##
## Control normalization (control spots) from limma. Here the
## parameter 'controlspots' must be specified to
## normalizeWithinArray function
##
## Robust spline normalization (control spots) from limma. Here the
## parameters 'df' and 'robust' must be specified to
## normalizeWithinArray function
tmp <- normalizeWithinArrays(toNorm, toNorm$printer,
weights=matrix(as.numeric(obj@UseSpots), dim(obj)[1], dim(obj)[2]), ...)
tmp1 <- as.matrix(tmp$M)
if(sum(idxMult) > 0)
tmp1[, idxMult] <- (-1)*tmp1[, idxMult]
norm@W <- tmp1
norm@A <- as.matrix(tmp$A)
norm@Notes <- paste(obj@Notes, ", normalized by ", type, " (from limma)", sep="")
## Returning the normalized object
return(norm)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.