Nothing
#' kpArrows
#'
#' @description
#'
#' Plots segments at the specified genomic positions.
#'
#' @details
#'
#' This is one of the functions from karyoploteR implementing the adaptation to the genome
#' context of basic plot functions from R base graphics.
#' Given a set of positions on the genome (chromosome, x0 and x1) and values
#' (y0 and y1) for each of them, it plots arrows going from (x0, y0) to (x1, y1). Data can be
#' provided via a \code{GRanges} object (\code{data}), independent parameters for chr,
#' x0, x1, y0 and y1, or a combination of both.
#' A number of parameters can be used to define exactly where and how the arrows are drawn.
#' In addition, via the ellipsis operator (\code{...}), \code{kpSegments} accepts any parameter
#' valid for \code{segments} (e.g. \code{code}, \code{lwd}, \code{lty}, \code{col}, ...)
#'
#' @usage kpArrows(karyoplot, data=NULL, chr=NULL, x0=NULL, x1=NULL, y0=NULL, y1=NULL, ymin=NULL, ymax=NULL, data.panel=1, r0=NULL, r1=NULL, clipping=TRUE, ...)
#'
#' @inheritParams kpRect
#'
#' @return
#'
#' Returns the original karyoplot object, unchanged.
#'
#' @seealso \code{\link{plotKaryotype}}, \code{\link{kpRect}}, \code{\link{kpPoints}},
#' @seealso \code{\link{kpPlotRegions}}
#'
#' @examples
#'
#' set.seed(1000)
#' data.points <- sort(createRandomRegions(nregions=500, length.mean=2000000, mask=NA))
#' y <- runif(500, min=0, max=0.8)
#' mcols(data.points) <- data.frame(y0=y, y1=y+0.2)
#'
#' kp <- plotKaryotype("hg19", plot.type=2, chromosomes=c("chr1", "chr2"))
#' kpDataBackground(kp, data.panel=1)
#' kpDataBackground(kp, data.panel=2)
#'
#' kpArrows(kp, data=data.points, col="black", lwd=2, length=0.04)
#'
#' kpArrows(kp, data=data.points, y0=0, y1=1, r0=0.2, r1=0.8, col="lightblue", data.panel=2)
#'
#'
#'
#' @export kpArrows
#'
kpArrows <- function(karyoplot, data=NULL,
chr=NULL, x0=NULL, x1=NULL, y0=NULL, y1=NULL,
ymin=NULL, ymax=NULL, data.panel=1, r0=NULL, r1=NULL,
clipping=TRUE, ...) {
if(!methods::is(karyoplot, "KaryoPlot")) stop("'karyoplot' must be a valid 'KaryoPlot' object")
karyoplot$beginKpPlot()
on.exit(karyoplot$endKpPlot())
pp <- prepareParameters4("kpArrows", karyoplot=karyoplot, data=data, chr=chr, x0=x0, x1=x1,
y0=y0, y1=y1, ymin=ymin, ymax=ymax, r0=r0, r1=r1,
data.panel=data.panel, ...)
ccf <- karyoplot$coord.change.function
x0plot <- ccf(chr=pp$chr, x=pp$x0, data.panel=data.panel)$x
x1plot <- ccf(chr=pp$chr, x=pp$x1, data.panel=data.panel)$x
y0plot <- ccf(chr=pp$chr, y=pp$y0, data.panel=data.panel)$y
y1plot <- ccf(chr=pp$chr, y=pp$y1, data.panel=data.panel)$y
processClipping(karyoplot=karyoplot, clipping=clipping, data.panel=data.panel)
#Filter the additional parameters using the 'filter' vector returned by prepareParameters4
dots <- filterParams(list(...), pp$filter, pp$original.length)
#And call the base plotting function with both the standard parameters and the modified dots parameters
params <- c(list(x0=x0plot, x1=x1plot, y0=y0plot, y1=y1plot), dots)
do.call(graphics::arrows, params)
#graphics::arrows(x0=x0plot, x1=x1plot, y0=y0plot, y1=y1plot, ...)
invisible(karyoplot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.