inferCNV uses the R packages r CRANpkg("ape")
, r Biocpkg("BiocGenerics")
, r CRANpkg("binhf")
, r CRANpkg("caTools")
, r CRANpkg("coda")
, r CRANpkg("coin")
, r CRANpkg("dplyr")
, r CRANpkg("doparallel")
, r Biocpkg("edgeR")
, r CRANpkg("fastcluster")
, r CRANpkg("fitdistrplus")
, r CRANpkg("foreach")
, r CRANpkg("futile.logger")
, r CRANpkg("future")
, r CRANpkg("gplots")
, r CRANpkg("ggplot2")
, r CRANpkg("HiddenMarkov")
, r CRANpkg("reshape")
, r CRANpkg("rjags")
, r CRANpkg("RColorBrewer")
, r Biocpkg("SingleCellExperiment")
, r Biocpkg("SummarizedExperiment")
and imports functions from the archived r CRANpkg("GMD")
.
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("infercnv")
If you want to use the interactive heatmap visualization, please check the add-on packge R r Githubpkg ("broadinstitute/inferCNV_NGCHM")
after installing the packages r CRANpkg("tibble")
, r Githubpkg("bmbroom/tsvio")
and r Githubpkg("bmbroom/NGCHMR")
. To install optional packages, type the following in an R command window:
install.packages("tibble") install.packages("devtools") devtools::install_github("bmbroom/tsvio") devtools::install_github("bmbroom/NGCHMR", ref="stable") devtools::install_github("broadinstitute/inferCNV_NGCHM")
And download the NGCHM java application by typing the following in a regular shell: ```{bash, eval = FALSE} wget http://tcga.ngchm.net/NGCHM/ShaidyMapGen.jar
```r knitr::opts_chunk$set(echo = TRUE) library(infercnv)
Reading in the raw counts matrix and meta data, populating the infercnv object
infercnv_obj = CreateInfercnvObject( raw_counts_matrix="../inst/extdata/oligodendroglioma_expression_downsampled.counts.matrix.gz", annotations_file="../inst/extdata/oligodendroglioma_annotations_downsampled.txt", delim="\t", gene_order_file="../inst/extdata/gencode_downsampled.EXAMPLE_ONLY_DONT_REUSE.txt", ref_group_names=c("Microglia/Macrophage","Oligodendrocytes (non-malignant)"))
out_dir = tempfile() infercnv_obj_default = infercnv::run( infercnv_obj, cutoff=1, # cutoff=1 works well for Smart-seq2, and cutoff=0.1 works well for 10x Genomics out_dir=out_dir, cluster_by_groups=TRUE, plot_steps=FALSE, denoise=TRUE, HMM=FALSE, no_prelim_plot=TRUE, png_res=60 )
Basic ouput from running inferCNV.
knitr::include_graphics(paste(out_dir, "infercnv.png", sep="/"))
For additional explanations on files, usage, and a tutorial please visit the wiki.
This tool is a part of the TrinityCTAT toolkit focused on leveraging the use of RNA-Seq to better understand cancer transcriptomes. To find out more please visit TrinityCTAT
This methodology was used in:
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.