Nothing
## ----setup, echo=FALSE, warning=FALSE-----------------------------------------
set.seed(42)
# knitr::opts_chunk$set(comment=NA,
# fig.align="center",
# fig.width = 7,
# fig.height = 7,
# warning=FALSE)
## ----installation, eval=FALSE-------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("ideal")
## ----loadlibrary, message=FALSE-----------------------------------------------
library("ideal")
## ----citation-----------------------------------------------------------------
citation("ideal")
## ----using--------------------------------------------------------------------
library("ideal")
## ----installairway, eval=FALSE------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("airway")
## ----loadairway, message=FALSE------------------------------------------------
library(airway)
library(DESeq2)
data(airway)
dds_airway <- DESeqDataSet(airway,design= ~ cell + dex)
dds_airway
# run deseq on it
dds_airway <- DESeq(dds_airway)
# extract the results
res_airway <- results(dds_airway, contrast = c("dex","trt","untrt"),alpha = 0.05)
## ----launchairway, eval=FALSE-------------------------------------------------
# ideal(dds_obj = dds_airway)
# # or also providing the results object
# ideal(dds_obj = dds_airway,res_obj = res_airway)
## ----annoairway, message = FALSE----------------------------------------------
library(org.Hs.eg.db)
genenames_airway <- mapIds(org.Hs.eg.db,keys = rownames(dds_airway),column = "SYMBOL",keytype="ENSEMBL")
annotation_airway <- data.frame(gene_id = rownames(dds_airway),
gene_name = genenames_airway,
row.names = rownames(dds_airway),
stringsAsFactors = FALSE)
head(annotation_airway)
## ----launchairwayanno, eval=FALSE---------------------------------------------
# ideal(dds_obj = dds_airway,
# annotation_obj = annotation_airway)
## ----fromedgerandlimma--------------------------------------------------------
library(DEFormats)
library(edgeR)
library(limma)
dge_airway <- as.DGEList(dds_airway) # this is your initial object
# your factors for the design:
dex <- colData(dds_airway)$dex
cell <- colData(dds_airway)$cell
redo_dds_airway <- as.DESeqDataSet(dge_airway)
# force the design to ~cell + dex
design(redo_dds_airway) <- ~cell+group #TODO: this is due to the not 100% re-conversion via DEFormats
### with edgeR
y <- calcNormFactors(dge_airway)
design <- model.matrix(~ cell + dex)
y <- estimateDisp(y,design)
# If you performed quasi-likelihood F-tests
fit <- glmQLFit(y,design)
qlf <- glmQLFTest(fit) # contrast for dexamethasone treatment
topTags(qlf)
# If you performed likelihood ratio tests
fit <- glmFit(y,design)
lrt <- glmLRT(fit)
topTags(lrt)
# lrt to DESeqResults
tbledger <- lrt$table
colnames(tbledger)[colnames(tbledger) == 'PValue'] <- 'pvalue'
colnames(tbledger)[colnames(tbledger) == 'logFC'] <- 'log2FoldChange'
colnames(tbledger)[colnames(tbledger) == 'logCPM'] <- 'baseMean'
# get from the logcpm to something more the baseMean for better
tbledger$baseMean <- (2^tbledger$baseMean) * mean(dge_airway$samples$lib.size) / 1e6
# use the constructor for DESeqResults
edger_resu <- DESeqResults(DataFrame(tbledger))
edger_resu <- DESeq2:::pvalueAdjustment(edger_resu, independentFiltering = TRUE,
alpha = 0.05, pAdjustMethod = "BH")
# cfr with res_airway
# plot(res_airway$pvalue,edger_resu$pvalue)
### with limma-voom
x <- calcNormFactors(dge_airway)
design <- model.matrix(~0+dex+cell)
contr.matrix <- makeContrasts(dextrt - dexuntrt,levels=colnames(design))
v <- voom(x, design)
vfit <- lmFit(v, design)
vfit <- contrasts.fit(vfit, contrasts=contr.matrix)
efit <- eBayes(vfit)
tbllimma <- topTable(efit,number= Inf, sort.by = "none")
colnames(tbllimma)[colnames(tbllimma) == 'P.Value'] <- 'pvalue'
colnames(tbllimma)[colnames(tbllimma) == 'logFC'] <- 'log2FoldChange'
colnames(tbllimma)[colnames(tbllimma) == 'AveExpr'] <- 'baseMean'
colnames(tbllimma)[colnames(tbllimma) == 'adj.P.Val'] <- 'padj'
# get from the logcpm to something more the baseMean for better
tbllimma$baseMean <- (2^tbllimma$baseMean) * mean(dge_airway$samples$lib.size) / 1e6
# use the constructor for DESeqResults
limma_resu <- DESeqResults(DataFrame(tbllimma))
# cfr with res_airway
# plot(res_airway$pvalue,limma_resu$pvalue)
## ----ideal-edgerlimma, eval=FALSE---------------------------------------------
# ideal(redo_dds_airway,edger_resu)
# # or ...
# ideal(redo_dds_airway,limma_resu)
## ----res2tbl------------------------------------------------------------------
summary(res_airway)
res_airway
head(deseqresult2tbl(res_airway))
## ----res2de-------------------------------------------------------------------
head(deseqresult2DEgenes(res_airway,FDR = 0.05))
# the output in the first lines is the same, but
dim(res_airway)
dim(deseqresult2DEgenes(res_airway))
## ----res-enhance--------------------------------------------------------------
myde <- deseqresult2DEgenes(res_airway,FDR = 0.05)
myde$symbol <- mapIds(org.Hs.eg.db,keys = as.character(myde$id),column = "SYMBOL",keytype="ENSEMBL")
myde_enhanced <- myde
myde_enhanced$id <- ideal:::createLinkENS(myde_enhanced$id,species = "Homo_sapiens")
myde_enhanced$symbol <- ideal:::createLinkGeneSymbol(myde_enhanced$symbol)
DT::datatable(myde_enhanced[1:100,], escape = FALSE)
## ----ggpc1--------------------------------------------------------------------
ggplotCounts(dds = dds_airway,
gene = "ENSG00000103196", # CRISPLD2 in the original publication
intgroup = "dex")
## ----ggpc2--------------------------------------------------------------------
ggplotCounts(dds = dds_airway,
gene = "ENSG00000103196", # CRISPLD2 in the original publication
intgroup = "dex",
annotation_obj = annotation_airway)
## ----goseq, eval=FALSE--------------------------------------------------------
# res_subset <- deseqresult2DEgenes(res_airway)[1:100,] # taking only a subset of the DE genes
# myde <- res_subset$id
# myassayed <- rownames(res_airway)
# mygo <- goseqTable(de.genes = myde,
# assayed.genes = myassayed,
# genome = "hg38",
# id = "ensGene",
# testCats = "GO:BP",
# addGeneToTerms = FALSE)
# head(mygo)
## ----go-enhance, eval=FALSE---------------------------------------------------
# mygo_enhanced <- mygo
# # using the unexported function to link the GO term to the entry in the AmiGO db
# mygo_enhanced$category <- ideal:::createLinkGO(mygo_enhanced$category)
# DT::datatable(mygo_enhanced,escape=FALSE)
## ----plotma, eval=FALSE-------------------------------------------------------
# plot_ma(res_airway, FDR = 0.05, hlines = 1,
# title ="Adding horizontal lines", add_rug = FALSE)
# plot_ma(res_airway, FDR = 0.1,
# intgenes = c("ENSG00000103196", # CRISPLD2
# "ENSG00000120129", # DUSP1
# "ENSG00000163884", # KLF15
# "ENSG00000179094"), # PER1
# title = "Providing a shortlist of genes",
# add_rug = FALSE
# )
## ----plotma2------------------------------------------------------------------
res_airway2 <- res_airway
res_airway2$symbol <- mapIds(org.Hs.eg.db,keys = rownames(res_airway2),column = "SYMBOL",keytype="ENSEMBL")
plot_ma(res_airway2, FDR = 0.05,
intgenes = c("CRISPLD2", # CRISPLD2
"DUSP1", # DUSP1
"KLF15", # KLF15
"PER1"), # PER1
annotation_obj = annotation_airway,
hlines = 2,
add_rug = FALSE,
title = "Putting gene names..."
)
## ----plotvolcano, eval = FALSE------------------------------------------------
# plot_volcano(res_airway)
## ----plotvolcano2-------------------------------------------------------------
plot_volcano(res_airway2, FDR = 0.05,
intgenes = c("CRISPLD2", # CRISPLD2
"DUSP1", # DUSP1
"KLF15", # KLF15
"PER1"), # PER1
title = "Selecting the handful of genes - and displaying the full range for the -log10(pvalue)",
ylim_up = -log10(min(res_airway2$pvalue, na.rm =TRUE)))
## ----sepguess-----------------------------------------------------------------
sepguesser(system.file("extdata/design_commas.txt",package = "ideal"))
sepguesser(system.file("extdata/design_semicolons.txt",package = "ideal"))
sepguesser(system.file("extdata/design_spaces.txt",package = "ideal"))
anyfile <- system.file("extdata/design_tabs.txt",package = "ideal") # we know it is going to be TAB
guessed_sep <- sepguesser(anyfile)
guessed_sep
# to be used for reading in the same file, without having to specify the sep
read.delim(anyfile, header = TRUE, as.is = TRUE,
sep = guessed_sep,
quote = "", row.names = 1, check.names = FALSE)
## ----sessioninfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.