Nothing
setGeneric("FixedExpressionData", function(normalizationMethod, expressionMatrix,
...) {
standardGeneric("FixedExpressionData")
})
setGeneric("ClassifierResults", function(weightingType, batchCorrection, score, classifierParameters) {
standardGeneric("ClassifierResults")
})
setGeneric("ClassifierParameters", function(name, doRun, hasTrainingData, normalizationMethod,
weights, description = "", intercept = NULL, means = NULL, sds = NULL, decisionBoundaries = NULL,
eventChain = NULL, citations = NULL) {
standardGeneric("ClassifierParameters")
})
setGeneric("TransformationProcess", function(name, values, ...) {
standardGeneric("TransformationProcess")
})
##############################################################
#' Obtain classifier score.
#'
#' \code{getScores} returns the resulting scores from a classifier
#' run
#'
#' @param object An object of class \code{\link{ClassifierResults}}
#'
#' @return A numeric vector with scores per sample
#'
#' @family classifier results
#'
#' @export
#' @docType methods
#' @rdname getScores-methods
#'
#' @examples
#' data(exampleMAS5)
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0', targetValue=500)
#' results <- runClassifier('EMC92', myData)
#' getScores( results )
#' getClassifications( results )
setGeneric("getScores", function(object) {
standardGeneric("getScores")
})
##############################################################
#' Obtain classifier classifications.
#'
#' \code{getClassifications} returns the resulting classifications.
#'
#' @param object An object of class \code{\link{ClassifierResults}}
#'
#' @return A vector of orderd factors with classifications per sample
#'
#' @family classifier results
#'
#' @export
#' @docType methods
#' @rdname getClassifications-methods
#'
#' @examples
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0',targetValue=500)
#' results <- runClassifier('EMC92', myData)
#' getScores( results )
#' getClassifications( results )
setGeneric("getClassifications", function(object) {
standardGeneric("getClassifications")
})
setGeneric("runProcess", function(object, expressionMat) {
standardGeneric("runProcess")
})
setGeneric("getValues", function(object) {
standardGeneric("getValues")
})
##############################################################
#' Obtain the batch correction status for a classifier result.
#'
#' \code{getBatchCorrection} returns TRUE or FALSE
#' indicating whether correction was applied
#'
#' @param object An object of class \code{\link{ClassifierResults}}
#' as returned by \code{\link{runClassifier}}
#'
#' @return TRUE or FALSE
#'
#' @family classifier results
#'
#' @export
#' @docType methods
#' @rdname getBatchCorrection-methods
#'
#' @examples
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0',targetValue=500)
#' results <- runClassifier('EMC92', myData)
#' getBatchCorrection( results )
setGeneric("getBatchCorrection", function(object) {
standardGeneric("getBatchCorrection")
})
##############################################################
#' Obtain the weighting type used to obtain a classifier result.
#'
#' \code{getWeightingType} returns weigthing type
#'
#'
#' @param object An object of class \code{\link{ClassifierResults}}
#' as returned by \code{\link{runClassifier}}
#'
#' @return one of the values in \code{getWeightingTypes()}
#'
#' @family classifier results
#'
#' @export
#' @docType methods
#' @rdname getWeightingType-methods
#'
#' @examples
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0',targetValue=500)
#' results <- runClassifier('EMC92', myData)
#' getWeightingType( results )
setGeneric("getWeightingType", function(object) {
standardGeneric("getWeightingType")
})
##############################################################
#' Obtain object names.
#'
#' \code{getName} returns the name associated with the requested object.
#'
#' @param object The object to get the name of.
#'
#' @return The return value is a character string
#'
#' @seealso \code{\link{ClassifierParameters}}
#' @seealso \code{\link{ClassifierResults}}
#'
#' @export
#' @docType methods
#' @rdname getName-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getName( aClassifier )
setGeneric("getName", function(object) {
standardGeneric("getName")
})
setGeneric("explicitlyChangeExprs<-", function(object, value) {
standardGeneric("explicitlyChangeExprs<-")
})
setGeneric("getExpressionEnvironment", function(object, value) {
standardGeneric("getExpressionEnvironment")
})
##############################################################
#' Obtain normalization method
#'
#' The function \code{getNormalizationMethod} returns the normalization method
#' associated with the object
#'
#' @param object An object of class \code{\link{FixedExpressionData}} or
#' \code{\link{ClassifierParameters}}
#'
#' @return A character string indicating the normalization method.
#'
#' @seealso \code{\link{getNormalizationMethods}}
#' @family classifier information functions
#' @family fixed data information extraction functions
#'
#' @export
#' @docType methods
#' @rdname getNormalizationMethod-methods
#'
#' @examples
#' data(exampleMAS5)
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0', targetValue=500)
#' aClassifier <- getClassifier('EMC92')
#' getNormalizationMethod( myData )
#' getNormalizationMethod( aClassifier )
setGeneric("getNormalizationMethod", function(object) {
standardGeneric("getNormalizationMethod")
})
##############################################################
#' Obtain the targetValue
#'
#' \code{getTargetValue} returns the current applied targetValue
#' in the MAS5.0 gene expression data.
#'
#' @param object An object of class \code{\link{FixedExpressionData}}
#'
#' @return A numeric value
#'
#' @family fixed data information extraction functions
#'
#' @export
#' @docType methods
#' @rdname getTargetValue-methods
#'
#' @examples
#' data(exampleMAS5)
#' myData <- setNormalizationMethod(exampleMAS5, 'MAS5.0', targetValue=500)
#' getTargetValue( myData )
setGeneric("getTargetValue", function(object) {
standardGeneric("getTargetValue")
})
setGeneric("setTargetValue<-", function(object, value) {
standardGeneric("setTargetValue<-")
})
setGeneric("rawExprs", function(object) {
standardGeneric("rawExprs")
})
setGeneric("addTransformationProcess", function(object, name, values, ...) {
standardGeneric("addTransformationProcess")
})
setGeneric("getTransformationProcesses", function(object) {
standardGeneric("getTransformationProcesses")
})
setGeneric("removeTransformationProcesses", function(object, n) {
standardGeneric("removeTransformationProcesses")
})
setGeneric("getNormalizationParameters", function(object) {
standardGeneric("getNormalizationParameters")
})
##############################################################
#' Obtain a classifier definition.
#'
#' \code{getClassifier} returns a requested classifier definition.
#'
#' @param value Either a text value indicating a classifier name
#' (see \code{\link{showClassifierList}}), or an object of
#' class \code{\link{ClassifierResults}} as returned by the
#' \code{\link{runClassifier}} function.
#'
#' @return The return value is a classifier definition which
#' is encoded in an object of class \code{\link{ClassifierParameters}}.
#' This can be used as input argument for the \code{\link{runClassifier}}
#' function.
#'
#' @family classifier information functions
#' @seealso \code{\link{ClassifierParameters}} and \code{\link{runClassifier}}
#'
#' @export
#' @docType methods
#' @rdname getClassifier-methods
#'
#' @examples
#' getClassifier('EMC92')
setGeneric("getClassifier", function(value) {
standardGeneric("getClassifier")
})
##############################################################
#' Obtain probe-set names.
#'
#' \code{getProbeNames} returns the probe names associated with
#' the requested classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return The return value is a character vector of probe-set names.
#'
#' @family classifier information functions
#' @seealso \code{\link{ClassifierParameters}}
#'
#' @export
#' @docType methods
#' @rdname getProbeNames-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getProbeNames( aClassifier )
setGeneric("getProbeNames", function(object) {
standardGeneric("getProbeNames")
})
##############################################################
#' Obtain classifier weights.
#'
#' \code{getWeights} returns the probe weights associated with
#' the classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return A numeric vector.
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getWeights-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getWeights(aClassifier)
setGeneric("getWeights", function(object) {
standardGeneric("getWeights")
})
##############################################################
#' Obtain classifier training data.
#'
#' \code{getTrainingData} returns the training data that was used
#' for building the classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return An object of class \code{\link{ExpressionSet}}
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getTrainingData-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getTrainingData(aClassifier)
setGeneric("getTrainingData", function(object) {
standardGeneric("getTrainingData")
})
##############################################################
#' Obtain citations to the classifier
#'
#' \code{getCitations} Obtain citations to the classifier
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return A character vector
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getCitations-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getCitations(aClassifier)
setGeneric("getCitations", function(object) {
standardGeneric("getCitations")
})
##############################################################
#' Obtain the decision boundaries defined for the classifier.
#'
#' \code{getDecisionBoundaries} returns the a numeric vector
#' of boundary values that separate the risk groups.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return A numeric vector
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getDecisionBoundaries-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getDecisionBoundaries(aClassifier)
setGeneric("getDecisionBoundaries", function(object) {
standardGeneric("getDecisionBoundaries")
})
##############################################################
#' Obtain classifiers' intercept.
#'
#' \code{getIntercept} returns the numeric value of the
#' classifier's intercept.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return A numeric value
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getIntercept-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getIntercept(aClassifier)
setGeneric("getIntercept", function(object) {
standardGeneric("getIntercept")
})
##############################################################
#' Obtain classifiers' description.
#'
#' \code{getDescription} returns the descriptive text associated
#' with the classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return A character string describing the classifier
#'
#' @family classifier information functions
#'
#' @export
#' @docType methods
#' @rdname getDescription-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getDescription(aClassifier)
setGeneric("getDescription", function(object) {
standardGeneric("getDescription")
})
##############################################################
#' Perform classification.
#'
#' \code{runClassifier} performs classification by applying a
#' classifier to gene expression data.
#'
#' @param classifierParameters Either a text value indicating a
#' classifier name (see \code{\link{showClassifierList}}), or an
#' object of class \link{ClassifierParameters} as returned by the
#' \code{\link{getClassifier}} function.
#'
#' @param fixedExpressionData The data to be classified in the
#' form of a \code{\link{FixedExpressionData}} object as returned
#' by the \code{\link{setNormalizationMethod}} function.
#'
#' @param ... see details
#'
#' @return The classification results as an object of class
#' \code{\link{ClassifierResults}}.
#'
#' @details A list of possible classifiers is obtained by
#' \code{\link{showClassifierList}}. The data to be classified
#' is first to be processed by the \link{setNormalizationMethod}
#' function. By default the data is assumed to contain many (n>=25)
#' samples with corresponding probe-sets needed for classification.
#' If one of these conditions is not met, a classifier outcome might
#' be seriously affected. By default an error is given. Although
#' strongly discouraged, it is possible to circumvent the security
#' checks. If not all required probe-sets are included in the input
#' set, you can explicitly pass the parameter \code{allow.reweighted = TRUE}
#' to the \code{runClassifier} function in order to determine the
#' classifier outcome using less probe-sets (e.g. possible if the
#' missing probe-sets are known to have minimal contribution).See
#' \code{vignette('MissingCovariates')} for more information. If
#' the input data has a small number of samples, the default batch
#' correction becomes ineffective. If you are aware of the possible
#' negative effects you can force to not use batch correction by
#' passing the parameter \code{do.batchcorrection=FALSE}.
#'
#' @family workflow functions
#'
#' @export
#' @docType methods
#' @rdname runClassifier-methods
#'
#' @examples
#' data(exampleMAS5)
#' myData<-setNormalizationMethod(exampleMAS5,'MAS5.0',targetValue=500)
#' runClassifier('EMC92',myData)
setGeneric("runClassifier", function(classifierParameters, fixedExpressionData, ...) {
standardGeneric("runClassifier")
})
##############################################################
#' Obtain classifiers' reference means.
#'
#' \code{getMeans} returns the reference means encoded in the
#' in the classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return Returns a numeric vector of probe set means as observed
#' in the reference data
#'
#'
#' @family classifier information functions
#' @seealso showClassifierList getClassifier runClassifier
#'
#' @export
#' @docType methods
#' @rdname getMeans-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getMeans(aClassifier)
setGeneric("getMeans", function(object) {
standardGeneric("getMeans")
})
##############################################################
#' Obtain classifiers' reference standard deviations.
#'
#' \code{getSds} returns the reference standard deviations
#' encoded in the classifier.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return Returns a numeric vector of probe set standard deviations
#' as observed in the reference data
#'
#'
#' @family classifier information functions
#' @seealso showClassifierList getClassifier runClassifier
#'
#' @export
#' @docType methods
#' @rdname getSds-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getSds(aClassifier)
setGeneric("getSds", function(object) {
standardGeneric("getSds")
})
setGeneric("getDoRun", function(object) {
standardGeneric("getDoRun")
})
##############################################################
#' Obtain classifiers' event chain.
#'
#' \code{getEventChain} returns the event chain encoded in the
#' in the classifier. The eventchain indicates what preprocessing
#' steps are performed by the \code{\link{runClassifier}} function
#' prior to classification.
#'
#' @param object An object of class \code{\link{ClassifierParameters}}
#' as returned by \code{\link{getClassifier}}
#'
#' @return Returns the event chain encoded in the
#' in the classifier encoded as a named list.
#'
#'
#' @family classifier information functions
#' @seealso showClassifierList getClassifier runClassifier
#'
#' @export
#' @docType methods
#' @rdname getEventChain-methods
#'
#' @examples
#' aClassifier <- getClassifier('EMC92')
#' getEventChain(aClassifier)
setGeneric("getEventChain", function(object) {
standardGeneric("getEventChain")
})
setGeneric("reWeightClassifier", function(object, fixedExpressionData) {
standardGeneric("reWeightClassifier")
})
setGeneric("hasTrainingData", function(object) {
standardGeneric("hasTrainingData")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.