R/bg.parameters.ns.R

bg.parameters.ns=function (x, affinities,affinities2=NULL,affinities3=NULL,span=.2)
{   
#  set.seed(1989)
  O=order(affinities)
  x1<-runmed(x[O],21)
  a1 <- affinities[O]
  window1 <- cut(a1, c(-Inf,seq(quantile(a1,.001),quantile(a1,.999),len=26),Inf))
  sample1= tapply(1:length(a1),window1,function(x)
    floor(quantile(x,seq(0,1,len=min(length(x),200)))))
  sample1=unlist(sample1[2:26])
  suppressWarnings(lo1<-loess(log(x1)~a1,subset=sample1,degree=1,family="symmetric",span=span))
  bg.mu=predict(lo1,affinities)
  bg.mu[affinities>max(a1[sample1])]=max(lo1$fitted)
  bg.mu[affinities<min(a1[sample1])]=min(lo1$fitted)
  res=log(x)-bg.mu;res=res[res<0];res=c(res,-res)
  bg.sigma=mad(res)

  if (is.null(affinities2)) bg.mu2=NULL
  else {bg.mu2=predict(lo1,affinities2)
        bg.mu2[affinities2>max(a1[sample1])]=max(lo1$fitted)
        bg.mu2[affinities2<min(a1[sample1])]=min(lo1$fitted)
      }
  
  if (is.null(affinities3))        return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.sigma=bg.sigma))
  
  else {bg.mu3=predict(lo1,affinities3)
        bg.mu3[affinities3>max(a1[sample1])]=max(lo1$fitted)
        bg.mu3[affinities3<min(a1[sample1])]=min(lo1$fitted)
        return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.mu3=bg.mu3,bg.sigma=bg.sigma))
      }
}


# sg.parameters=function(pms,apm,Source){
#   apm=as.matrix(apm)
#   index.affinities <- which(!is.na(apm[,1]))
#   apm=apm[index.affinities,]
#   pms=pms[index.affinities,]
#   set.seed(1)
#   if(Source=="reference"){ #one array
#     Subset <- sample(1:length(pms),25000)
#     y <- log2(pms)[Subset]
#     Subset <- (Subset-1)%%nrow(pms)+1
#     x <- apm[Subset]}
#   else {#multiple arrays
#     set.seed(1)
#     Subset <- sample(1:length(pms),25000)
#     y <- log2(pms)[Subset]
#     x <- apm[Subset]}
#   fit1 <- lm(y~x)
#   return(fit1$coef)
# }
  
bg.parameters.ns2 <- function (x, affinities,affinities2=NULL,affinities3=NULL,span=.2)
{   
#  set.seed(1989)
  O=order(affinities)
  x1<-runmed(x[O],21)
  a1 <- affinities[O]
  window1 <- cut(a1, c(-Inf,seq(quantile(a1,.001),quantile(a1,.999),len=26),Inf))
  sample1= tapply(1:length(a1),window1,function(x)
    floor(quantile(x,seq(0,1,len=min(length(x),200)))))
  sample1=unlist(sample1[2:26])
  suppressWarnings(lo1<-loess(log(x1)~a1,subset=sample1,degree=1,family="symmetric",span=.2))
  bg.mu=predict(lo1,affinities)
  bg.mu[affinities>max(a1[sample1])]=max(lo1$fitted)
  bg.mu[affinities<min(a1[sample1])]=min(lo1$fitted)
  res=log(x)-bg.mu;res=res[res<0];res=c(res,-res)
  bg.sigma=mad(res)

  if (is.null(affinities2)) bg.mu2=NULL
  else {bg.mu2=predict(lo1,affinities2)
        bg.mu2[affinities2>max(a1[sample1])]=max(lo1$fitted)
        bg.mu2[affinities2<min(a1[sample1])]=min(lo1$fitted)
      }
  
  if (is.null(affinities3))        return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.sigma=bg.sigma))
  
  else {bg.mu3=predict(lo1,affinities3)
        bg.mu3[affinities3>max(a1[sample1])]=max(lo1$fitted)
        bg.mu3[affinities3<min(a1[sample1])]=min(lo1$fitted)
        return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.mu3=bg.mu3,bg.sigma=bg.sigma))
      }
}

  

Try the gcrma package in your browser

Any scripts or data that you put into this service are public.

gcrma documentation built on Nov. 8, 2020, 5:12 p.m.