Nothing
bg.parameters.ns=function (x, affinities,affinities2=NULL,affinities3=NULL,span=.2)
{
# set.seed(1989)
O=order(affinities)
x1<-runmed(x[O],21)
a1 <- affinities[O]
window1 <- cut(a1, c(-Inf,seq(quantile(a1,.001),quantile(a1,.999),len=26),Inf))
sample1= tapply(1:length(a1),window1,function(x)
floor(quantile(x,seq(0,1,len=min(length(x),200)))))
sample1=unlist(sample1[2:26])
suppressWarnings(lo1<-loess(log(x1)~a1,subset=sample1,degree=1,family="symmetric",span=span))
bg.mu=predict(lo1,affinities)
bg.mu[affinities>max(a1[sample1])]=max(lo1$fitted)
bg.mu[affinities<min(a1[sample1])]=min(lo1$fitted)
res=log(x)-bg.mu;res=res[res<0];res=c(res,-res)
bg.sigma=mad(res)
if (is.null(affinities2)) bg.mu2=NULL
else {bg.mu2=predict(lo1,affinities2)
bg.mu2[affinities2>max(a1[sample1])]=max(lo1$fitted)
bg.mu2[affinities2<min(a1[sample1])]=min(lo1$fitted)
}
if (is.null(affinities3)) return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.sigma=bg.sigma))
else {bg.mu3=predict(lo1,affinities3)
bg.mu3[affinities3>max(a1[sample1])]=max(lo1$fitted)
bg.mu3[affinities3<min(a1[sample1])]=min(lo1$fitted)
return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.mu3=bg.mu3,bg.sigma=bg.sigma))
}
}
# sg.parameters=function(pms,apm,Source){
# apm=as.matrix(apm)
# index.affinities <- which(!is.na(apm[,1]))
# apm=apm[index.affinities,]
# pms=pms[index.affinities,]
# set.seed(1)
# if(Source=="reference"){ #one array
# Subset <- sample(1:length(pms),25000)
# y <- log2(pms)[Subset]
# Subset <- (Subset-1)%%nrow(pms)+1
# x <- apm[Subset]}
# else {#multiple arrays
# set.seed(1)
# Subset <- sample(1:length(pms),25000)
# y <- log2(pms)[Subset]
# x <- apm[Subset]}
# fit1 <- lm(y~x)
# return(fit1$coef)
# }
bg.parameters.ns2 <- function (x, affinities,affinities2=NULL,affinities3=NULL,span=.2)
{
# set.seed(1989)
O=order(affinities)
x1<-runmed(x[O],21)
a1 <- affinities[O]
window1 <- cut(a1, c(-Inf,seq(quantile(a1,.001),quantile(a1,.999),len=26),Inf))
sample1= tapply(1:length(a1),window1,function(x)
floor(quantile(x,seq(0,1,len=min(length(x),200)))))
sample1=unlist(sample1[2:26])
suppressWarnings(lo1<-loess(log(x1)~a1,subset=sample1,degree=1,family="symmetric",span=.2))
bg.mu=predict(lo1,affinities)
bg.mu[affinities>max(a1[sample1])]=max(lo1$fitted)
bg.mu[affinities<min(a1[sample1])]=min(lo1$fitted)
res=log(x)-bg.mu;res=res[res<0];res=c(res,-res)
bg.sigma=mad(res)
if (is.null(affinities2)) bg.mu2=NULL
else {bg.mu2=predict(lo1,affinities2)
bg.mu2[affinities2>max(a1[sample1])]=max(lo1$fitted)
bg.mu2[affinities2<min(a1[sample1])]=min(lo1$fitted)
}
if (is.null(affinities3)) return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.sigma=bg.sigma))
else {bg.mu3=predict(lo1,affinities3)
bg.mu3[affinities3>max(a1[sample1])]=max(lo1$fitted)
bg.mu3[affinities3<min(a1[sample1])]=min(lo1$fitted)
return(list(bg.mu=bg.mu,bg.mu2=bg.mu2,bg.mu3=bg.mu3,bg.sigma=bg.sigma))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.