Nothing
## ---- eval = FALSE------------------------------------------------------------
# library(Biobase)
# library(limma)
# library(gCrisprTools)
#
# data("es", package = "gCrisprTools")
# data("ann", package = "gCrisprTools")
# data("aln", package = "gCrisprTools")
## ---- eval = FALSE------------------------------------------------------------
# sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference")
# names(sk) <- row.names(pData(es))
## ---- eval = FALSE------------------------------------------------------------
# design <- model.matrix(~ 0 + REPLICATE_POOL + TREATMENT_NAME, pData(es))
# colnames(design) <- gsub('TREATMENT_NAME', '', colnames(design))
# contrasts <-makeContrasts(DeathExpansion - ControlExpansion, levels = design)
## ---- eval = FALSE------------------------------------------------------------
# es <- ct.filterReads(es, trim = 1000, sampleKey = sk)
## ---- eval = FALSE------------------------------------------------------------
# es <- ct.normalizeGuides(es, method = "scale", plot.it = TRUE) #See man page for other options
# vm <- voom(exprs(es), design)
#
# fit <- lmFit(vm, design)
# fit <- contrasts.fit(fit, contrasts)
# fit <- eBayes(fit)
## ---- eval = FALSE------------------------------------------------------------
# ann <- ct.prepareAnnotation(ann, fit, controls = "NoTarget")
## ---- eval = FALSE------------------------------------------------------------
# resultsDF <-
# ct.generateResults(
# fit,
# annotation = ann,
# RRAalphaCutoff = 0.1,
# permutations = 1000,
# scoring = "combined",
# permutation.seed = 2
# )
## ---- eval = FALSE------------------------------------------------------------
# data("fit", package = "gCrisprTools")
# data("resultsDF", package = "gCrisprTools")
#
# fit <- fit[(row.names(fit) %in% row.names(ann)),]
# resultsDF <- resultsDF[(row.names(resultsDF) %in% row.names(ann)),]
## ---- eval = FALSE------------------------------------------------------------
# ct.alignmentChart(aln, sk)
# ct.rawCountDensities(es, sk)
## ---- eval = FALSE------------------------------------------------------------
# ct.gRNARankByReplicate(es, sk)
# ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "NoTarget") #Show locations of NTC gRNAs
## ---- eval = FALSE------------------------------------------------------------
# ct.viewControls(es, ann, sk, normalize = FALSE)
# ct.viewControls(es, ann, sk, normalize = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# ct.GCbias(es, ann, sk)
# ct.GCbias(fit, ann, sk)
## ---- eval = FALSE------------------------------------------------------------
# ct.stackGuides(es,
# sk,
# plotType = "gRNA",
# annotation = ann,
# nguides = 40)
## ---- eval = FALSE------------------------------------------------------------
# ct.stackGuides(es,
# sk,
# plotType = "Target",
# annotation = ann)
## ---- eval = FALSE------------------------------------------------------------
# ct.stackGuides(es,
# sk,
# plotType = "Target",
# annotation = ann,
# subset = names(sk)[grep('Expansion', sk)])
## ---- eval = FALSE------------------------------------------------------------
# ct.guideCDF(es, sk, plotType = "gRNA")
# ct.guideCDF(es, sk, plotType = "Target", annotation = ann)
## ---- eval = FALSE------------------------------------------------------------
# ct.topTargets(fit,
# resultsDF,
# ann,
# targets = 10,
# enrich = TRUE)
# ct.topTargets(fit,
# resultsDF,
# ann,
# targets = 10,
# enrich = FALSE)
## ---- eval = FALSE------------------------------------------------------------
# ct.viewGuides("Target1633", fit, ann)
# ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "Target1633")
## ---- eval = FALSE------------------------------------------------------------
# enrichmentResults <-
# ct.PantherPathwayEnrichment(
# resultsDF,
# pvalue.cutoff = 0.01,
# enrich = TRUE,
# organism = 'mouse'
# )
## ---- eval = FALSE------------------------------------------------------------
# data("essential.genes", package = "gCrisprTools")
# ROCs <- ct.ROC(resultsDF, essential.genes, stat = "deplete.p")
# PRCs <- ct.PRC(resultsDF, essential.genes, stat = "deplete.p")
## ---- eval = FALSE------------------------------------------------------------
# path2report <- #Make a report of the whole experiment
# ct.makeReport(fit = fit,
# eset = es,
# sampleKey = sk,
# annotation = ann,
# results = resultsDF,
# aln = aln,
# outdir = ".")
#
# path2QC <- #Or one focusing only on experiment QC
# ct.makeQCReport(es,
# trim = 1000,
# log2.ratio = 0.05,
# sampleKey = sk,
# annotation = ann,
# aln = aln,
# identifier = 'Crispr_QC_Report',
# lib.size = NULL
# )
#
# path2Contrast <- #Or Contrast-specific one
# ct.makeContrastReport(eset = es,
# fit = fit,
# sampleKey = sk,
# results = resultsDF,
# annotation = ann,
# comparison.id = NULL,
# identifier = 'Crispr_Contrast_Report')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.