Nothing
context("swish")
library(SummarizedExperiment)
library(fishpond)
test_that("basic variable errors thrown", {
set.seed(1)
y <- makeSimSwishData()
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
# too many levels of condition
y2 <- y
y2$condition <- gl(3,3,10)
expect_error(swish(y2, "condition"))
# batch and pair together
y2 <- y
y2$batch <- rep(1:2,5)
y2$pair <- rep(1:5,2)
expect_error(swish(y2, "condition", "batch", "pair"))
# wrong number of pairs
y2 <- y
y2$pair <- c(1,2,3,4,5,1,1,2,2,3)
expect_error(swish(y2, "condition", pair="pair"), "single sample for both levels")
# no inferential replicates
y <- makeSimSwishData()
assays(y) <- assays(y)[c("counts","abundance","length")]
expect_error(scaleInfReps(y), "no inferential")
expect_error(swish(y, "condition"), "no inferential")
# too many permutations requested
y <- makeSimSwishData(m=100, n=4)
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
# there are 4! = 24 permutations
expect_message(swish(y, x="condition", nperms=25, quiet=TRUE), "less permutations")
# too few samples
y <- makeSimSwishData(m=100, n=2)
y <- scaleInfReps(y, quiet=TRUE)
y2 <- labelKeep(y)
expect_error(swish(y2, x="condition"), "All rows")
y <- labelKeep(y, minN=2)
expect_error(swish(y, x="condition"), "too few samples")
y <- makeSimSwishData(m=100, n=6)
y$batch <- factor(c(1:3,1:3))
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
expect_error(swish(y, x="condition", cov="batch"), "too few samples")
})
test_that("basic swish analyses", {
set.seed(1)
# two group
y <- makeSimSwishData(m=200)
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
y <- swish(y, x="condition", quiet=TRUE)
expect_true("qvalue" %in% colnames(mcols(y)))
plotInfReps(y, 1, "condition")
dev.off()
# differential transcript usage
# requires a gene ID column
mcols(y)$gene_id <- as.character(rep(1:(nrow(y)/5), each=5))
iso <- isoformProportions(y, quiet=TRUE)
iso <- swish(iso, x="condition", quiet=TRUE)
# try the old, slow method
y <- swish(y, x="condition", fast=0, quiet=TRUE)
# estimate pi0
y <- swish(y, x="condition", estPi0=TRUE, qvaluePkg="qvalue", quiet=TRUE)
y <- swish(y, x="condition", estPi0=TRUE, qvaluePkg="samr", quiet=TRUE)
# use samr for qvalue
y <- swish(y, x="condition", qvaluePkg="samr", quiet=TRUE)
# two group with batch covariate
y <- makeSimSwishData(m=200, n=20)
y$batch <- factor(rep(c(1,2,1,2),each=5))
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
y <- swish(y, x="condition", cov="batch", quiet=TRUE)
plotInfReps(y, 1, "condition", "batch")
dev.off()
# try the old, slow method
y <- swish(y, x="condition", cov="batch", fast=0, quiet=TRUE)
# two group, matched samples
y <- makeSimSwishData(m=200)
y$pair <- rep(1:5,2)
y <- scaleInfReps(y, quiet=TRUE)
y <- labelKeep(y)
y <- swish(y, x="condition", pair="pair", quiet=TRUE)
# alternative scaling
y <- makeSimSwishData(m=200)
y <- scaleInfReps(y, lengthCorrect=FALSE, quiet=TRUE)
y <- makeSimSwishData()
y <- scaleInfReps(y, sfFun=function(x) colSums(x)/mean(colSums(x)), quiet=TRUE)
})
test_that("infRV calculation and plotting", {
y <- makeSimSwishData(m=200)
y <- computeInfRV(y)
#mcols(y)$meanCts <- rowMeans(assays(y)[["counts"]])
#with(mcols(y), plot(meanCts, meanInfRV))
})
test_that("alevin to fishpond", {
if (FALSE) {
dir <- system.file("extdata", package="tximportData")
files <- file.path(dir,"alevin/neurons_900_v014/alevin/quants_mat.gz")
file.exists(files)
library(tximeta)
se <- tximeta(files, type="alevin") # this makes a ~1 Gb SE
se <- se[1:1000,1:100] # 12 Mb
y <- se
y <- labelKeep(y, minCount=3, minN=10)
y <- y[mcols(y)$keep,]
assays(y) <- lapply(assays(y), as.matrix)
y <- scaleInfReps(y, lengthCorrect=FALSE)
y$condition <- factor(rep(1:2, each=50))
y <- swish(y, x="condition")
hist(mcols(y)$pvalue)
}
})
test_that("basic deswish analyses", {
# y <- makeSimSwishData()
# y <- labelKeep(y)
# y <- deswish(y, ~condition, "condition_2_vs_1")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.