Nothing
#' @title
#' Extraction of Differential Gene Expression
#'
#' @description
#' The edge package implements methods for carrying out differential
#' expression analyses of genome-wide gene expression studies. Significance
#' testing using the optimal discovery procedure and generalized likelihood
#' ratio tests (equivalent to F-tests and t-tests) are implemented for general study
#' designs. Special functions are available to facilitate the analysis of
#' common study designs, including time course experiments. Other packages
#' such as snm, sva, and qvalue are integrated in edge to provide a wide range
#' of tools for gene expression analysis.
#'
#' @examples
#' \dontrun{
#' browseVignettes("edge")
#' }
#' @name edge
#' @author John Storey, Jeffrey Leek, Andrew Bass
#' @docType package
#' @import Biobase methods splines sva snm qvalue MASS
#' @useDynLib edge odpScoreCluster kldistance
NULL
#' @title Gene expression dataset from Calvano et al. (2005) Nature
#'
#' @description
#' The data provide gene expression measurements in an endotoxin study where
#' four subjects were given endotoxin and four subjects were given a placebo.
#' Blood samples were collected and leukocytes were isolated from the samples
#' before infusion and at times 2, 4, 6, 9, 24 hours.
#'
#' @usage data(endotoxin)
#' @format
#' \itemize{
#' \item endoexpr: A 500 rows by 46 columns data frame containing expression
#' values.
#' \item class: A vector of length 46 containing information about which
#' individuals were given endotoxin.
#' \item ind: A vector of length 46 providing indexing measurements for each
#' individual in the experiment.
#' \item time: A vector of length 46 indicating time measurements.
#' }
#'
#' @note
#' The data is a random subset of 500 genes from the full dataset. To
#' download the full data set, go to \url{http://genomine.org/edge/}.
#'
#' @references
#' Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance
#' analysis of time course microarray experiments. PNAS, 102: 12837-12842. \cr
#' \url{http://www.pnas.org/content/100/16/9440.full}
#'
#' @examples
#' library(splines)
#' # import data
#' data(endotoxin)
#' ind <- endotoxin$ind
#' class <- endotoxin$class
#' time <- endotoxin$time
#' endoexpr <- endotoxin$endoexpr
#' cov <- data.frame(individual = ind, time = time, class = class)
#'
#' # formulate null and full models in experiement
#' # note: interaction term is a way of taking into account group effects
#' mNull <- ~ns(time, df=4, intercept = FALSE) + class
#' mFull <- ~ns(time, df=4, intercept = FALSE) +
#' ns(time, df=4, intercept = FALSE):class + class
#'
#' # create deSet object
#' de_obj <- build_models(endoexpr, cov = cov, full.model = mFull,
#' null.model = mNull, ind = ind)
#'
#' # Perform ODP/lrt statistic to determine significant genes in study
#' de_odp <- odp(de_obj, bs.its = 10)
#' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)
#'
#' # summarize significance results
#' summary(de_odp)
#' @name endotoxin
#' @return endotoxin dataset
#' @docType data
#' @keywords datasets
NULL
#' @title Gene expression dataset from Rodwell et al. (2004)
#'
#' @usage
#' data(kidney)
#'
#' @description
#' Gene expression measurements from kidney samples were obtained from 72
#' human subjects ranging in age from 27 to 92 years. Only one array was
#' obtained per individual, and the age and sex of each individual were
#' recorded.
#'
#' @format
#' \itemize{
#' \item kidcov: A 133 rows by 6 columns data frame detailing the study
#' design.
#' \item kidexpr: A 500 rows by 133 columns matrix of gene expression values,
#' where each row corresponds to a different probe-set and each column to a
#' different tissue sample.
#' \item age: A vector of length 133 giving the age of each sample.
#' \item sex: A vector of length 133 giving the sex of each sample.
#' }
#' @note
#' These data are a random subset of 500 probe-sets from the total number of
#' probe-sets in the original data set. To download the full data set, go to
#' \url{http://genomine.org/edge/}. The \code{age} and \code{sex} are contained
#' in \code{kidcov} data frame.
#'
#' @references
#' Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance
#' analysis of time course microarray experiments. PNAS, 102: 12837-12842. \cr
#' \url{http://www.pnas.org/content/100/16/9440.full}
#'
#' @examples
#' # import data
#' data(kidney)
#' sex <- kidney$sex
#' age <- kidney$age
#' kidexpr <- kidney$kidexpr
#'
#' # create model
#' de_obj <- build_study(data = kidexpr, adj.var = sex, tme = age,
#' sampling = "timecourse", basis.df = 4)
#'
#' # use the ODP/lrt method to determine significant genes
#' de_odp <- odp(de_obj, bs.its=10)
#' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)
#'
#' # summarize significance results
#' summary(de_odp)
#' @name kidney
#' @return kidney dataset
#' @docType data
#' @keywords datasets
NULL
#' @title Gene expression dataset from Idaghdour et al. (2008)
#'
#' @usage
#' data(gibson)
#'
#' @description
#' The data provide gene expression measurements in peripheral blood leukocyte
#' samples from three Moroccan groups leading distinct ways of life:
#' desert nomadic (DESERT), mountain agrarian (VILLAGE), and coastal urban
#' (AGADIR).
#'
#' @format
#' \itemize{
#' \item batch: Batches in experiment.
#' \item location: Environment/lifestyle of Moroccan Amazigh groups.
#' \item gender: Sex of individuals.
#' \item gibexpr: A 500 rows by 46 columns matrix of gene expression values.
#' }
#'
#' @note
#' These data are a random subset of 500 genes from the total number of genes
#' in the original data set. To download the full data set, go to
#' \url{http://genomine.org/de/}.
#'
#' @references
#' Idaghdour Y, Storey JD, Jadallah S, and Gibson G. (2008) A genome-wide gene
#' expression signature of lifestyle in peripheral blood of Moroccan Amazighs.
#' PLoS Genetics, 4: e1000052.
#'
#' @examples
#' # import
#' data(gibson)
#' batch <- gibson$batch
#' gender <- gibson$gender
#' location <- gibson$location
#' gibexpr <- gibson$gibexpr
#' cov <- data.frame(Batch = batch, Gender = gender,
#' Location = location)
#'
#' # create deSet for experiment- static experiment
#' mNull <- ~Gender + Batch
#' mFull <- ~Gender + Batch + Location
#'
#' # create deSet object
#' de_obj <- build_models(gibexpr, cov = cov, full.model = mFull,
#' null.model = mNull)
#'
#' # Perform ODP/lrt statistic to determine significant genes in study
#' de_odp <- odp(de_obj, bs.its = 10)
#' de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)
#'
#' # summarize significance results
#' summary(de_odp)
#' @name gibson
#' @return gibson dataset
#' @docType data
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.