Nothing
## ----setup, echo=FALSE, results="hide"----------------------------------------
knitr::opts_chunk$set(tidy=FALSE, cache=FALSE,
dev="png",
message=FALSE, error=FALSE, warning=TRUE)
## ----quickStart, eval=FALSE---------------------------------------------------
# bs <- BSseq(chr = chr, pos = pos,
# M = M, Cov = Cov,
# sampleNames = sampleNames)
# pData(bs)$Condition <- trt
#
# regions <- dmrseq(bs=bs, testCovariate="Condition")
## ----bismarkinput-------------------------------------------------------------
library(dmrseq)
infile <- system.file("extdata/test_data.fastq_bismark.bismark.cov.gz",
package = 'bsseq')
bismarkBSseq <- read.bismark(files = infile,
rmZeroCov = TRUE,
strandCollapse = FALSE,
verbose = TRUE)
bismarkBSseq
## ----dissect, results="hide", echo=FALSE--------------------------------------
data("BS.chr21")
M <- getCoverage(BS.chr21, type="M")
Cov <- getCoverage(BS.chr21, type="Cov")
chr <- as.character(seqnames(BS.chr21))
pos <- start(BS.chr21)
celltype <- pData(BS.chr21)$CellType
sampleNames <- sampleNames(BS.chr21)
## ----fromScratch--------------------------------------------------------------
head(M)
head(Cov)
head(chr)
head(pos)
dim(M)
dim(Cov)
length(chr)
length(pos)
print(sampleNames)
print(celltype)
bs <- BSseq(chr = chr, pos = pos,
M = M, Cov = Cov,
sampleNames = sampleNames)
show(bs)
## ----cleanup, results="hide", echo=FALSE--------------------------------------
rm(M, Cov, pos, chr, bismarkBSseq)
## ----meta---------------------------------------------------------------------
pData(bs)$CellType <- celltype
pData(bs)$Replicate <- substr(sampleNames,
nchar(sampleNames), nchar(sampleNames))
pData(bs)
## ---- filter------------------------------------------------------------------
# which loci and sample indices to keep
loci.idx <- which(DelayedMatrixStats::rowSums2(getCoverage(bs, type="Cov")==0) == 0)
sample.idx <- which(pData(bs)$CellType %in% c("imr90", "h1"))
bs.filtered <- bs[loci.idx, sample.idx]
## ---- results="hide", echo=FALSE----------------------------------------------
rm(bs.filtered)
## ----mainfunction, message=TRUE, warning=TRUE---------------------------------
testCovariate <- "CellType"
regions <- dmrseq(bs=bs[240001:260000,],
cutoff = 0.05,
testCovariate=testCovariate)
## ---- showresults-------------------------------------------------------------
show(regions)
## ----parallel, eval=FALSE-----------------------------------------------------
# library("BiocParallel")
# register(MulticoreParam(4))
## ----blocks, message=TRUE, warning=TRUE---------------------------------------
testCovariate <- "CellType"
blocks <- dmrseq(bs=bs[120001:125000,],
cutoff = 0.05,
testCovariate=testCovariate,
block = TRUE,
minInSpan = 500,
bpSpan = 5e4,
maxGapSmooth = 1e6,
maxGap = 5e3)
head(blocks)
## -----------------------------------------------------------------------------
sum(regions$qval < 0.05)
# select just the regions below FDR 0.05 and place in a new data.frame
sigRegions <- regions[regions$qval < 0.05,]
## ----hyper--------------------------------------------------------------------
sum(sigRegions$stat > 0) / length(sigRegions)
## ----plot, out.width='\\textwidth', fig.height = 2.5, warning='hide'----------
# get annotations for hg18
annoTrack <- getAnnot("hg18")
plotDMRs(bs, regions=regions[1,], testCovariate="CellType",
annoTrack=annoTrack)
## ----plotblock, out.width='\\textwidth', fig.height = 2.5, warning='hide'-----
plotDMRs(bs, regions=blocks[1,], testCovariate="CellType",
annoTrack=annoTrack)
## ----plot2, fig.height=3------------------------------------------------------
plotEmpiricalDistribution(bs, testCovariate="CellType")
## ----plot3, fig.height=3------------------------------------------------------
plotEmpiricalDistribution(bs, testCovariate="CellType",
type="Cov", bySample=TRUE)
## ----export, eval=FALSE-------------------------------------------------------
# write.csv(as.data.frame(regions),
# file="h1_imr90_results.csv")
## ---- meandiff----------------------------------------------------------------
rawDiff <- meanDiff(bs, dmrs=sigRegions, testCovariate="CellType")
str(rawDiff)
## ---- sim---------------------------------------------------------------------
data(BS.chr21)
# reorder samples to create a null comparison
BS.null <- BS.chr21[1:20000,c(1,3,2,4)]
# add 100 DMRs
BS.chr21.sim <- simDMRs(bs=BS.null, num.dmrs=100)
# bsseq object with original null + simulated DMRs
show(BS.chr21.sim$bs)
# coordinates of spiked-in DMRs
show(BS.chr21.sim$gr.dmrs)
# effect sizes
head(BS.chr21.sim$delta)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.