Nothing
#' @details
#' There are three categories of functions available
#' \enumerate{
#' \item Differential co-expression methods (DC) - These functions are used to
#' perform a differential co-expression analysis on experimental data with binary
#' conditions.
#' \item Functions to evaluate DC methods - These functions are used to evaluate
#' methods implemented in the package and novel methods on simulated data.
#' Expression data is simulated for 2 conditions, wild-type and knock-down of
#' given genes.
#' \item By-products of implementations
#' }
#'
#' @section Differential co-expression methods (DC):
#' \itemize{
#' \item{\code{\link{dcMethods}}}
#' \item{\code{\link{dcScore}}}
#' \item{\code{\link{dcTest}}}
#' \item{\code{\link{dcAdjust}}}
#' \item{\code{\link{dcNetwork}}}
#' }
#'
#' @section Functions to evaluate DC methods:
#' Accessors of simulated data:
#' \itemize{
#' \item{\code{\link{getConditionNames}}}
#' \item{\code{\link{getSimData}}}
#' \item{\code{\link{getTrueNetwork}}}
#' \item{\code{\link{plotSimNetwork}}}
#' }
#'
#' Functions for evaluating inference methods
#' \itemize{
#' \item{\code{\link{dcPipeline}}}
#' \item{\code{\link{dcEvaluate}}}
#' }
#'
#' @section By-products of implementations:
#' These are functions used in the package but have further uses in general:
#' \itemize{
#' \item{\code{\link{cor.pairs}}} - a faster implementation of pairwise
#' correlation computation
#' \item{\code{\link{mi.ap}}} - pairwise computation of mutual information
#' MI with data discretisation performed using adaptive partitioning
#' \item{\code{\link{perfMethods}}} - available performance metrics
#' \item{\code{\link{performanceMeasure}}} - performance measures of prediction
#' algorithms. Predictions have to be binary
#' }
#'
#' @keywords internal classif graphs
#'
"_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.