R/norm.R

# normalize()
# wrapper function to apply normalization methods to Codelink objects.
#normalize <- function(object, method = "quantiles", log.it = TRUE,
#	preserve = FALSE, weights = NULL, verbose = FALSE) {
setMethod("normalize", "Codelink", function(object, method="quantiles", log.it=TRUE, preserve=FALSE, weights=NULL, loess.method="fast") {
#normalize = function(object, method="quantiles", log.it=TRUE, preserve=FALSE, weights=NULL, loess.method="fast") {
	.Deprecated(msg="The Codelink interface is deprecated. Read Codelink data with 'readCodelinkSet' instead. More details in the vignette and documentation.")
	
	if(!is(object,"Codelink")) stop("A Codelink object is needed.")
	if(is.null(object$Ri)) stop("Background corrected intensities needed.")
	if(log.it && object$method$log) stop("Intensities already log2.")
	
	method <- match.arg(method, c("loess", "quantiles", "median"))
	
	if(!is.null(weights))
		if(is.matrix(weights))
			weights=apply(weights,1,min)
	
	object$Ni <- object$Ri
	if(log.it) object$Ni <- log2(object$Ni)
	switch(method,
				 loess = {
				 	#object$Ni <- normalize.loess(object$Ni, log.it = FALSE,
				 															 #weights = weights, verbose = verbose)
				 	object$Ni = normalizeCyclicLoess(object$Ni, weights=weights,method = loess.method)
				 	object$method$normalization <- "CyclicLoess"
				 },
				 quantiles = {
				 	object$Ni <- normalizeQuantiles(object$Ni)
				 	#object$Ni <- normalize.quantiles(object$Ni)
				 	object$method$normalization <- "quantiles"
				 },
				 median = {
				 	# no weights used right now.
				 	#object$Ni <- normalize.median(object$Ni,weights=weights)
				 	object$Ni <- normalizeMedianValues(object$Ni)
				 	object$method$normalization <- "median"
				 }
	)
	if(!preserve) object$Ri <- NULL
	if(log.it) object$method$log <- TRUE
	return(object)
})
#}

# normalize.median()
# based on limma implementation.
# normalize.median <- function(x, weights = NULL) {
# 	l <- dim(x)[2]
# 	
# 	if(is.null(weights)) {
# 		for(j in 1:l)
# 			x[, j] <- x[, j] - median(x[, j], na.rm = TRUE)
# 	} else {
# 		for(j in 1:l)
# 			x[, j] <- x[, j] - weighted.median(x[, j], weights[, j],
# 				na.rm = TRUE)
# 	}
# 
# 	x
# }


# normalize.loess()
# based on affy implementation.
# modified to allows missing values and weights.
# normalize.loess <- function (mat, 
# 	subset = sample(1:(dim(mat)[1]), min(c(5000, nrow(mat)))),
# 	epsilon = 10^-2, maxit = 1, log.it = TRUE,
# 	verbose = FALSE, span = 2/3, family.loess = "symmetric", weights = NULL) 
# {
#     J <- dim(mat)[2]
#     II <- dim(mat)[1]
#     newData <- mat
#     if (log.it) {
#         mat <- log2(mat)
#         newData <- log2(newData)
#     }
#     change <- epsilon + 1
#     fs <- matrix(0, II, J)
#     iter <- 0
# 
# 	if(is.null(weights))
#     	w <- c(0, rep(1, length(subset)), 0)
# 	else
# 		w <- weights
#     
# 	while (iter < maxit) {
#         iter <- iter + 1
#         means <- matrix(0, II, J)
#         for (j in 1:(J - 1)) {
#             for (k in (j + 1):J) {
#                 y <- newData[, j] - newData[, k]
#                 x <- (newData[, j] + newData[, k])/2
# 				
# 				# select genes that are not set to NA
# 				sel <- which(!is.na(as.character(y)))
# 				y <- y[sel]
# 				x <- x[sel]
# 				ww <- w[sel]
#                 
# 				index <- c(order(x)[1], subset, order(-x)[1])
#                 xx <- x[index]
#                 yy <- y[index]
# 				# reorder weights.
# 				ww <- ww[index]
# 
#                 aux <- loess(yy ~ xx, span = span, degree = 1, 
#                   weights = ww, family = family.loess, control = loess.control(surface = "direct"))
#                 aux <- predict(aux, data.frame(xx = x))/J
# 				# apply normalization to genes not NA.
#                 means[sel, j] <- means[sel, j] + aux
#                 means[sel, k] <- means[sel, k] - aux
#                 if (verbose) 
#                   cat(" + Done with", j, "vs", k, " in iteration ", 
#                     iter, "\n")
#             }
#         }
#         fs <- fs + means
#         newData <- mat - fs
#         change <- max(colMeans((means[subset, ])^2))
#         if (verbose) 
#             cat(iter, change, "\n")
#         oldfs <- fs
#     }
#     if ((change > epsilon) && (maxit > 1)) 
#         warning(paste("!! No convergence after", maxit, "iterations.\n"))
#     if (log.it) {
#         return(2^newData)
#     }
#     else return(newData)
# }
# 
# normalize.loess2 <- function(mat, ...) {
# 	J <- dim(mat)[2]
#     II <- dim(mat)[1]
# 
# 	means <- matrix(0, II, J)
# 	for (j in 1:(J - 1)) {
# 		for (k in (j + 1):J) {
# 			M <- mat[, j] - mat[, k]
# 			A <- (mat[, j] + mat[, k])/2
# 			tmp <- loessFit(M, A, ...)
# 			means[, j] <- means[, j] + tmp$fitted
# 			means[, k] <- means[, k] - tmp$fitted
# 		}
# 	}
# 	return(mat-means)
# }

Try the codelink package in your browser

Any scripts or data that you put into this service are public.

codelink documentation built on Nov. 8, 2020, 8:19 p.m.