R/summarize.R

# #' Summary information about called peaks
# #'
# #' Get information about the peak calls in a \code{\link{multiHMM}} object.
# #'
# #' @author Aaron Taudt
# #' @param multi.hmm A \code{\link{multiHMM}} object.
# #' @return A \code{list()} object with various entries.
# #' @examples
# #'## Load example multivariate Hidden Markov Model
# #'data(example.multi.HMM)
# #'## Summary information about peaks
# #'summarizePeaks(example.multi.HMM)
# #' @export
# summarizePeaks <- function(multi.hmm) {
# 
#     ## Get summary statistics about called peaks
#     stats <- list()
#     stats$total <- list()
#     stats$total$ID <- vector()
#     stats$total$num.peaks <- vector()
#     stats$total$frac.in.peaks <- vector()
#     stats$total$mean.len.peaks <- vector()
#     stats$total$var.len.peaks <- vector()
#     binstates <- dec2bin(multi.hmm$segments$state)
#     colnames(binstates) <- multi.hmm$info$ID
#     segments <- multi.hmm$segments
#     for (sample in multi.hmm$info$ID) {
#         stats$total$ID[sample] <- sample
#         stats$total$num.peaks[sample] <- sum(binstates[,sample])
#         stats$total$frac.in.peaks[sample] <- sum(as.numeric(width(segments)[binstates[,sample]])) / sum(as.numeric(seqlengths(segments)))
#         stats$total$mean.len.peaks[sample] <- mean(width(segments)[binstates[,sample]])
#         stats$total$var.len.peaks[sample] <- var(width(segments)[binstates[,sample]])
#     }
#     stats$total <- as.data.frame(stats$total)
#     rownames(stats$total) <- NULL
# 
#     ## Get summary statistics about called peaks per chromosome
#     for (chrom in seqlevels(multi.hmm$bins)) {
#         mask <- as.logical(seqnames(multi.hmm$segments)==chrom)
#         chrstats <- list()
#         chrstats$ID <- vector()
#         chrstats$num.peaks <- vector()
#         chrstats$frac.in.peaks <- vector()
#         chrstats$mean.len.peaks <- vector()
#         chrstats$var.len.peaks <- vector()
#         chrsegments <- multi.hmm$segments[mask]
#         for (sample in multi.hmm$info$ID) {
#             chrstats$ID[sample] <- sample
#             chrstats$num.peaks[sample] <- sum(binstates[mask,sample])
#             chrstats$frac.in.peaks[sample] <- sum(as.numeric(width(chrsegments)[binstates[mask,sample]])) / seqlengths(chrsegments)[names(seqlengths(chrsegments))==chrom]
#             chrstats$mean.len.peaks[sample] <- mean(width(chrsegments)[binstates[mask,sample]])
#             chrstats$var.len.peaks[sample] <- var(width(chrsegments)[binstates[mask,sample]])
#         }
#         chrstats <- as.data.frame(chrstats)
#         rownames(chrstats) <- NULL
#         stats[[chrom]] <- chrstats
#     }
# 
#     ## Return
#     return(stats)
# 
# }
# 
# #' Summary information about differential peak calls
# #'
# #' Get information about the differential peak calls in a \code{\link{multiHMM}} object.
# #'
# #' @author Aaron Taudt
# #' @param multi.hmm A \code{\link{multiHMM}} object.
# #' @return A \code{list()} object with various entries.
# #' @examples
# #'## Load example multivariate Hidden Markov Model
# #'data(example.multi.HMM)
# #'## Summary information about differentially modified peaks
# #'summarizeDiffPeaks(example.multi.HMM)
# #' @export
# summarizeDiffPeaks <- function(multi.hmm) {
# 
#     ## Get differential states
#     states <- levels(multi.hmm$bins$state)
#     binstates <- dec2bin(states)
#     diffstates <- states[xor(apply(binstates, 1, function(x) { Reduce('|', x) }), apply(binstates, 1, function(x) { Reduce('&', x) }))]
# 
#     diffmask.seg <- multi.hmm$segments$state %in% diffstates
#     diffmask.bin <- multi.hmm$bins$state %in% diffstates
# 
#     stats <- list()
#     stats$num.diff.seg <- vector()
#     stats$frac.diff.seg <- vector()
#     stats$mean.len.diff.seg <- vector()
#     stats$var.len.diff.seg <- vector()
# 
#     ## Get summary statistics about differentially modified states
#     stats$num.diff.seg['total'] <- length(multi.hmm$segments[diffmask.seg])
#     stats$frac.diff.seg['total'] <- sum(as.numeric(width(multi.hmm$segments)[diffmask.seg])) / sum(as.numeric(seqlengths(multi.hmm$segments)))
#     stats$mean.len.diff.seg['total'] <- mean(width(multi.hmm$segments)[diffmask.seg])
#     stats$var.len.diff.seg['total'] <- var(width(multi.hmm$segments)[diffmask.seg])
# 
#     ## Get summary statistics about differentially modified states per chromosome
#     for (chrom in seqlevels(multi.hmm$bins)) {
#         stats$num.diff.seg[chrom] <- length(multi.hmm$segments[diffmask.seg & seqnames(multi.hmm$segments)==chrom])
#         stats$frac.diff.seg[chrom] <- sum(as.numeric(width(multi.hmm$segments)[diffmask.seg & as.logical(seqnames(multi.hmm$segments)==chrom)])) / sum(as.numeric(seqlengths(multi.hmm$segments)))
#         stats$mean.len.diff.seg[chrom] <- mean(width(multi.hmm$segments)[diffmask.seg & as.logical(seqnames(multi.hmm$segments)==chrom)])
#         stats$var.len.diff.seg[chrom] <- var(width(multi.hmm$segments)[diffmask.seg & as.logical(seqnames(multi.hmm$segments)==chrom)])
#     }
#     stats <- as.data.frame(stats)
# 
#     ## Return
#     return(stats)
# 
# }
# 

Try the chromstaR package in your browser

Any scripts or data that you put into this service are public.

chromstaR documentation built on Nov. 8, 2020, 8:29 p.m.