Nothing
#' Experiment data table
#'
#' A \code{data.frame} specifying the structure of the experiment.
#'
#' @format A \code{data.frame} with columns 'file', 'mark', 'condition', 'replicate', 'pairedEndReads' and 'controlFiles'. Avoid the use of special characters like '-' or '+' as this will confuse the internal file management.
#' @name experiment.table
#' @examples
#'data(experiment_table)
#'print(experiment_table)
#'
NULL
#' Univariate HMM for demonstration purposes
#'
#' A \code{\link{uniHMM}} object for demonstration purposes in examples of package \pkg{\link{chromstaR}}.
#'
#' @docType data
#' @name model.univariate
#' @format A \code{\link{uniHMM}} object.
#' @examples
#'## Get an example uniHMM
#'file <- system.file("data","H3K27me3-BN-rep1.RData", package="chromstaR")
#'model <- get(load(file))
NULL
#' Multivariate HMM for demonstration purposes
#'
#' A \code{\link{multiHMM}} object for demonstration purposes in examples of package \pkg{\link{chromstaR}}.
#'
#' @docType data
#' @name model.multivariate
#' @format A \code{\link{multiHMM}} object.
#' @examples
#'## Get an example multiHMM
#'file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",
#' package="chromstaR")
#'model <- get(load(file))
NULL
#' Combined multivariate HMM for demonstration purposes
#'
#' A \code{\link{combinedMultiHMM}} object for demonstration purposes in examples of package \pkg{\link{chromstaR}}.
#'
#' @docType data
#' @name model.combined
#' @format A \code{\link{combinedMultiHMM}} object.
#' @examples
#'## Get an example combinedMultiHMM
#'file <- system.file("data","combined_mode-differential.RData",
#' package="chromstaR")
#'model <- get(load(file))
NULL
#' Gene coordinates for rn4
#'
#' A data.frame containing gene coordinates and biotypes of the rn4 assembly.
#'
#' @docType data
#' @name genes_rn4
#' @format A data.frame.
#' @examples
#'data(genes_rn4)
#'head(genes_rn4)
NULL
#' chromstaR objects
#'
#' @description
#' \pkg{\link{chromstaR}} defines several objects.
#' \itemize{
#' \item \code{\link{uniHMM}}: Returned by \code{\link{callPeaksUnivariate}}.
#' \item \code{\link{multiHMM}}: Returned by \code{\link{callPeaksMultivariate}} and \code{\link{callPeaksReplicates}}.
#' \item \code{\link{combinedMultiHMM}}: Returned by \code{\link{combineMultivariates}}.
#' }
#'
#' @name chromstaR-objects
NULL
#' Binned read counts
#'
#' A \code{\link[GenomicRanges]{GRanges-class}} object which contains binned read counts as meta data column \code{counts}. It is output of the \code{\link{binReads}} function.
#' @name binned.data
NULL
#' Univariate HMM object
#'
#' The univariate HMM object is output of the function \code{\link{callPeaksUnivariate}} and is a \code{list()} with various entries. The \code{class()} attribute of this list was set to "uniHMM". For a given hmm, the entries can be accessed with the list operators 'hmm[[]]' or 'hmm$'.
#'
#' @return
#' A \code{list()} with the following entries:
#' \item{info}{Experiment table for this object.}
#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
#' \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
#' \item{transitionProbs}{Matrix of transition probabilities from each state (row) into each state (column).}
#' \item{transitionProbs.initial}{Initial \code{transitionProbs} at the beginning of the Baum-Welch.}
#' \item{startProbs}{Probabilities for the first bin. Same as \code{hmm$posteriors[1,]}.}
#' \item{startProbs.initial}{Initial \code{startProbs} at the beginning of the Baum-Welch.}
#' \item{distributions}{Estimated parameters of the emission distributions.}
#' \item{distributions.initial}{Distribution parameters at the beginning of the Baum-Welch.}
#' \item{post.cutoff}{Cutoff for posterior probabilities to call peaks.}
#' \item{convergenceInfo}{Contains information about the convergence of the Baum-Welch algorithm.}
#' \item{convergenceInfo$eps}{Convergence threshold for the Baum-Welch.}
#' \item{convergenceInfo$loglik}{Final loglikelihood after the last iteration.}
#' \item{convergenceInfo$loglik.delta}{Change in loglikelihood after the last iteration (should be smaller than \code{eps})}
#' \item{convergenceInfo$num.iterations}{Number of iterations that the Baum-Welch needed to converge to the desired \code{eps}.}
#' \item{convergenceInfo$time.sec}{Time in seconds that the Baum-Welch needed to converge to the desired \code{eps}.}
#' \item{convergenceInfo$max.mean}{Value of parameter \code{max.mean}.}
#' \item{convergenceInfo$read.cutoff}{Cutoff value for read counts.}
#' @seealso \code{\link{callPeaksUnivariate}}, \code{\link{multiHMM}}, \code{\link{combinedMultiHMM}}
#' @name uniHMM
#' @aliases uni.hmm
NULL
#' Multivariate HMM object
#'
#' The multivariate HMM object is output of the function \code{\link{callPeaksMultivariate}} and is a \code{list()} with various entries. The \code{class()} attribute of this list was set to "multiHMM". For a given hmm, the entries can be accessed with the list operators 'hmm[[]]' or 'hmm$'.
#'
#' @return
#' A \code{list()} with the following entries:
#' \item{info}{Experiment table for this object.}
#' \item{bincounts}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates and original binned read count values for different offsets.}
#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing the genomic bin coordinates, their read count, (optional) posteriors and state classification.}
#' \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
#' \item{mapping}{A named vector giving the mapping from decimal combinatorial states to human readable combinations.}
#' \item{weights}{Weight for each component. Same as \code{apply(hmm$posteriors,2,mean)}.}
#' \item{weights.univariate}{Weights of the univariate HMMs.}
#' \item{transitionProbs}{Matrix of transition probabilities from each state (row) into each state (column).}
#' \item{transitionProbs.initial}{Initial \code{transitionProbs} at the beginning of the Baum-Welch.}
#' \item{startProbs}{Probabilities for the first bin. Same as \code{hmm$posteriors[1,]}.}
#' \item{startProbs.initial}{Initial \code{startProbs} at the beginning of the Baum-Welch.}
#' \item{distributions}{Emission distributions used for this model.}
#' \item{convergenceInfo}{Contains information about the convergence of the Baum-Welch algorithm.}
#' \item{convergenceInfo$eps}{Convergence threshold for the Baum-Welch.}
#' \item{convergenceInfo$loglik}{Final loglikelihood after the last iteration.}
#' \item{convergenceInfo$loglik.delta}{Change in loglikelihood after the last iteration (should be smaller than \code{eps})}
#' \item{convergenceInfo$num.iterations}{Number of iterations that the Baum-Welch needed to converge to the desired \code{eps}.}
#' \item{convergenceInfo$time.sec}{Time in seconds that the Baum-Welch needed to converge to the desired \code{eps}.}
#' \item{correlation.matrix}{Correlation matrix of transformed reads.}
#' @seealso \code{\link{callPeaksMultivariate}}, \code{\link{uniHMM}}, \code{\link{combinedMultiHMM}}
#' @name multiHMM
#' @aliases multi.hmm
#' @examples
#'## Get an example multiHMM
#'file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",
#' package="chromstaR")
#'model <- get(load(file))
NULL
#' Combined multivariate HMM object
#'
#' The combined multivariate HMM object is output of the function \code{\link{combineMultivariates}} and is a \code{list()} with various entries. The \code{class()} attribute of this list was set to "combinedMultiHMM". For a given hmm, the entries can be accessed with the list operators 'hmm[[]]' or 'hmm$'.
#'
#' @return
#' A \code{list()} with the following entries:
#' \item{info}{Experiment table for this object.}
#' \item{bins}{A \code{\link[GenomicRanges]{GRanges-class}} object containing genomic bin coordinates and human readable combinations for the combined \code{\link{multiHMM}} objects.}
#' \item{segments}{Same as \code{bins}, but consecutive bins with the same state are collapsed into segments.}
#' \item{segments.per.condition}{A \code{list()} with segments for each condition separately.}
#' \item{peaks}{A \code{list()} with \code{\link[GenomicRanges]{GRanges-class}} containing peak coordinates for each ID in \code{info}.}
#' \item{frequencies}{Genomic frequencies of combinations.}
#' \item{mode}{Mode of analysis.}
#' @seealso \code{\link{combineMultivariates}}, \code{\link{uniHMM}}, \code{\link{multiHMM}}
#' @name combinedMultiHMM
#' @aliases combinedHMM
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.