Nothing
#' Plot mode fragment size
#'
#' @importFrom magrittr %>%
#' @import ggplot2
#' @import stringr
#' @import dplyr
#' @param x A long-format dataframe contains the interpeak distance,
#' a template please refer to the result of "callPeakdist" function.
#' @param order The groups show in the final plot,
#' the input value should be vector, e.g. `groups = c("group1","group2")`,
#' default is all folders in the folder path.
#' @param type The plot type, could choose "bin" or "stacked" chart.
#' Default is bin plot.
#' @param mincount Minimum count of mode fragment size that will be included.
#' Count number smaller than this value will be removed first,
#' then proportion of each count value will be calculated.
#' Default value is 0.
#' @param hline The horizontal lines added to the bin plot.
#' Default lines will be `c(81,112,170)`.
#' @param ... Further arguments passed to or from other methods.
#' @return The function returns the plot.
#'
#' @examples
#' # Get the path to example data.
#' path <- examplePath("groups_picard")
#' # Calculate the modes.
#' df <- callMode(path = path)
#' # Plot modes.
#' plot <- plotMode(df, hline = c(80, 111, 170))
#' @author Haichao Wang
#' @export
plotMode <- function(x, order, type, mincount, hline, ...) {
group <- insert_size <- x_index <- file_name <- prop <- NULL
if (missing(order)) order <- as.vector(unique(x$group))
if (missing(type)) type <- "bin"
if (missing(mincount)) {
mincount <- 0
cat("setting default mincount as 0.\n")
}
if (missing(hline)) {
hline <- c(81, 112, 170)
cat("setting default horizontal lines: y = 81, 112, 170. \n")
}
# Generate bin plot.
if (type == "bin") {
if (missing(order)) {
order <- as.vector(unique(x$group))
}
# Sort the dataframe based on the order vector.
df <- x %>%
filter(group %in% as.vector(order)) %>%
# Group by "group" for sort
group_by(group) %>%
# Sort by insert_size
arrange(insert_size, .by_group = TRUE) %>%
# Change group order which will alfter the order of groups.
arrange(factor(group, levels = order)) %>%
ungroup() %>%
mutate(x_index = row_number())
# Set the levels of "group".
df$group <- factor(df$group, levels = order)
# Start the plot.
p1 <- ggplot(df, aes(x = x_index, y = insert_size, fill = group)) +
geom_bar(stat = "identity", color = "gray25", show.legend = FALSE) +
theme(
plot.background = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
# axis.text = element_blank(),
axis.title = element_blank()
) +
geom_vline(xintercept = 0,
colour = "gray15",
linetype = 1,
size = 2) +
geom_hline(yintercept = 0,
colour = "gray15",
linetype = 1,
size = 2)
# Add horizontal lines to the plot.
for (i in c(seq_len(length(hline)))) {
p1 <- p1 +
geom_hline(
yintercept = hline[i],
linetype = "dashed",
color = "gray30",
size = 0.6
)
}
# Calculate breaks.
breaks <- vector()
# Set the first value in breaks.
if (length(order) == 1) {
breaks[1] <- nrow(filter(df, group == order[1])) / 2
} else if (length(order) > 1) {
breaks[1] <- nrow(filter(df, group == order[1])) / 2
for (i in c(2:length(order))) {
breaks[i] <- nrow(filter(df, group %in%
as.vector(order[seq_len(i - 1)]))) +
nrow(filter(df, group == order[i])) / 2
}
} else {
print("No group(s) was included in the analysis!")
}
# Calculate labels.
labels <- vector()
for (i in c(seq_len(length(order)))) {
labels[i] <- paste0(
stringr::str_to_title(order[i]),
"\n",
"(",
"n=",
filter(df, group == order[i]) %>%
group_by(file_name) %>%
count() %>%
nrow(),
")"
)
}
# Set the x-lab.
result <- p1 +
scale_y_continuous(
expand = c(0, 0),
breaks = append(hline, 0, after = 0),
labels = as.character(append(hline, 0, after = 0))
) +
scale_x_continuous(
expand = c(0, 0),
breaks = breaks,
labels = labels
) +
theme(
axis.text = element_text(size = 10),
axis.title = element_text(size = 14, face = "bold")
) +
labs(x = "Group", y = "Mode Fragment size (bp)", fill = "Group")
} else if (type == "stacked") {
# Generate summary.
summary <-
x %>%
filter(group %in% as.vector(order)) %>%
group_by(group, insert_size) %>%
summarise(count = n()) %>%
filter(count >= mincount) %>%
mutate(prop = count / sum(count))
# Generate stacked bar chart plot.
result <- ggplot(
summary,
aes(
x = factor(group, levels = order),
y = prop * 100,
fill = factor(insert_size)
)
) +
geom_bar(stat = "identity", width = 0.7, color = "gray24") +
labs(x = "Group", y = "Percent", fill = "Mode Fragment Size") +
theme_classic(base_size = 15) +
theme(
axis.text = element_text(size = 10),
axis.title = element_text(size = 14, face = "bold")
)
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.